Computer Architecture: From Microprocessors to Supercomputers

Computer Architecture: From Microprocessors to Supercomputers

Computer Architecture: From Microprocessors to Supercomputers

Computer Architecture: From Microprocessors to Supercomputers


Computer Architecture: From Microprocessors to Supercomputers provides a comprehensive introduction to this thriving and exciting field. Emphasising both underlying theory and actual designs, the book covers a wide array of topics and links computer architecture to other subfields of computing. The material is presented in lecture-sized chapters that make it easy for students to understand the relationships between various topics and to see the 'big picture.' The short chapters also allow instructors to order topics in the course as they like. The text is divided into seven parts, each containing four chapters. Part I provides context and reviews prerequisite topics including digital computer technology and computer system performance. Part II discusses instruction-set architecture. The next two parts cover the central processing unit. Part III describes the structure of arithmetic/logic units and Part IV is devoted to data path and control circuits. Part V deals with the memory system. Part VI covers input/output and interfacing topics and Part VII introduces advanced architectures.


—Ernest Hemingway, Death in the Afternoon

The Context of Computer Architecture

Computer architecture is an area of study dealing with digital computers at the interface between hardware and software. It is more hardware-oriented than “computer systems,” an area typically covered in courses by the same name in computer science or engineering, and more concerned with software than the fields known as “computer design” and “computer organization.” The subject matter, nevertheless, is quite fluid and varies greatly from one textbook or course to another in its orientation and coverage. This explains, in part, why there are so many different textbooks on computer architecture and why yet another textbook on the subject might serve a useful purpose.

Computer architecture encompasses a set of core ideas that are applicable to the design or understanding of virtually any computer, from the tiniest embedded microprocessors that control our appliances, cameras, and numerous other devices through personal, server, and mainframe machines to the most powerful supercomputers found only in (and affordable only by) large data centers or major scientific laboratories. It also branches into more advanced subfields, each with its own community of researchers, periodicals, symposia, and, of course, technical jargon. Computer designers must no doubt be familiar with the entire field to be able to use the range of available methods in designing fast, efficient, and robust systems. Less obvious is the fact that even simple computer users can benefit from a firm grasp of the core ideas and from an awareness of the more advanced concepts in computer architecture.

A common theme in computer architecture is coping with complexity. Much of this complexity arises from our desire to make everything as fast as possible. Some of the resulting techniques, such as predictive and speculative execution, are at odds with other goals of system design that include low cost, compactness, energy economy, short time to market, and testability. It is the constant push and pull of such conflicting requirements that makes computer architecture a thriving and exciting field of study. Adding to the excitement are the opposing forces of innovation and compatibility with existing investments in skills, systems, and applications.

Scope and Features

This textbook, an outgrowth of lecture notes that the author has developed and refined over many years, covers the core ideas of computer architecture in some depth and provides an overview of many advanced concepts that may be pursued in higher-level courses such as those on supercomputing, parallel processing, and distributed systems.

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.