Understanding the Language of Science

Understanding the Language of Science

Understanding the Language of Science

Understanding the Language of Science

Synopsis

From astronomy to zoology, the practice of science proceeds from scientific ways of thinking. These patterns of thought, such as defining and classifying, hypothesizing and experimenting, form the building blocks of all scientific endeavor. Understanding how they work is therefore an essential foundation for everyone involved in scientific study or teaching, from elementary school students to classroom teachers and professional scientists.

In this book, Steven Darian examines the language of science in order to analyze the patterns of thinking that underlie scientific endeavor. He draws examples from university science textbooks in a variety of disciplines, since these offer a common, even canonical, language for scientific expression. Darian identifies and focuses in depth on nine patterns- defining, classifying, using figurative language, determining cause and effect, hypothesizing, experimenting, visualizing, quantifying, and comparing- and shows how they interact in practice. He also traces how these thought modes developed historically from Pythagoras through Newton.

Excerpt

I had no desire to entice you with misleading premises, for there are, to be sure, many languages of science: the language of university science lectures and the explanatory inquiries of the elementary school classroom; the language of scientists debating issues in the laboratory; the language of papers presented at conferences and of articles in scholarly journals; plus the actual language of discovery. We also find pieces for the layman, from Popular Mechanics and Scientific American articles to accounts in print and broadcast journalism; and then, the language of textbooks, from primary and secondary school through university level, in textbooks introductory and advanced, on subjects from general biology to immunology.

This language of science, as we can see, is an enormous undertaking, with a nearly endless variety of audiences and participants, purposes, and degrees of complexity. A work encompassing this would be a lifetime's task, like tracing the declensions of the stars. Instead, I have chosen a more modest task, but one that, I would suggest, underlies the rest of them. I have taken, as my sample, university textbooks from a range of disciplines— geology and physics, biology and chemistry—with the thought that these illustrate, in a basic yet polished way, the language of science. For while these various languages seem to multiply as in an algebraist's dream, the tools, or syntax, of scientific inquiry are relatively few in number.

In contrast to textbooks, practitioners tend to reject the term “scientific method,” arguing that there is no rigid sequence in the process of scientific discovery and validation. While this is true—as we will see in Chapter 1— we are still left with a limited number of tools, ways of thinking, or, as they are called in the humanities, rhetorical modes. These are the thought patterns I have focused on in our study. One problem, of course, is that textbooks do not peek beneath the covers, to show the conflicts and conundrums, the false starts and blind alleys that all scientists encounter in their search for truth. And we will try to catch some of these in our historical excursion.

Admittedly, as O. Régent remarks, the types of scientific discourse used in practice “contain none of the uniformity nor the simplicity of the expository discourse to be found in school or university textbooks” (in Riley 1985, 105). We even find differences in cultural attitudes. But the beauty of the texts is their closely argued, tight-fitting interaction between these various modes of thought: How do definitions and examples, causeand-effect statements and classifying, hypotheses and experiments, fig-

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.