Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers

Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers

Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers

Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers


Every day, we use our computers to perform remarkable feats. A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease?

This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more.

These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.


Computing is transforming our society in ways that are as profound as the changes wrought by physics and chemistry in the previous two centuries. Indeed, there is hardly an aspect of our lives that hasn’t already been influenced, or even revolutionized, by digital technology. Given the importance of computing to modern society, it is therefore somewhat paradoxical that there is so little awareness of the fundamental concepts that make it all possible. The study of these concepts lies at the heart of computer science, and this new book by MacCormick is one of the relatively few to present them to a general audience.

One reason for the relative lack of appreciation of computer science as a discipline is that it is rarely taught in high school. While an introduction to subjects such as physics and chemistry is generally considered mandatory, it is often only at the college or university level that computer science can be studied in its own right. Furthermore, what is often taught in schools as “computing” or “ICT” (information and communication technology) is generally little more than skills training in the use of software packages. Unsurprisingly, pupils find this tedious, and their natural enthusiasm for the use of computer technology in entertainment and communication is tempered by the impression that the creation of such technology is lacking in intellectual depth. These issues are thought to be at the heart of the 50 percent decline in the number of students studying computer science at university over the last decade. In light of the crucial importance of digital technology to modern society, there has never been a more important time to re-engage our population with the fascination of computer science.

In 2008 I was fortunate in being selected to present the 180th series of Royal Institution Christmas Lectures, which were initiated by Michael Faraday in 1826. The 2008 lectures were the first time they had been given on the theme of computer science. When preparing these lectures I spent much time thinking about how to explain . . .

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.