Collective Animal Behavior

Collective Animal Behavior

Collective Animal Behavior

Collective Animal Behavior


Fish travel in schools, birds migrate in flocks, honeybees swarm, and ants build trails. How and why do these collective behaviors occur? Exploring how coordinated group patterns emerge from individual interactions, Collective Animal Behavior reveals why animals produce group behaviors and examines their evolution across a range of species.

Providing a synthesis of mathematical modeling, theoretical biology, and experimental work, David Sumpter investigates how animals move and arrive together, how they transfer information, how they make decisions and synchronize their activities, and how they build collective structures. Sumpter constructs a unified appreciation of how different group-living species coordinate their behaviors and why natural selection has produced these groups. For the first time, the book combines traditional approaches to behavioral ecology with ideas about self-organization and complex systems from physics and mathematics. Sumpter offers a guide for working with key models in this area along with case studies of their application, and he shows how ideas about animal behavior can be applied to understanding human social behavior.

Containing a wealth of accessible examples as well as qualitative and quantitative features, Collective Animal Behavior will interest behavioral ecologists and all scientists studying complex systems.


Some scientists invest an entire career in the study of organisms of a single species, others in understanding particular types of cells or in determining the role of a certain gene. The elements of each level of biological organization can take more than a lifetime to understand. How then can we put all this information together? Understand how genes interact to drive the cell, how cells interact to form organisms, and how organisms interact to form groups and societies? These questions are fundamental to the scientific endeavor: how do we use our understanding of one level of organization to inform us about the level above?

Linking different levels of organization involves the study of collective phenomena: phenomena in which repeated interactions among many individuals produce patterns on a scale larger than themselves. Collective phenomena are within us and all around us: the clustering of cells to build our bodies, the firing of neurons in our brains, flocks of birds twisting above our heads, and the pulsating mass of bodies surrounding us on a Saturday night dance floor. Understanding these phenomena is an important part of the fields of developmental biology, neuroscience, behavioral ecology, and sociology, to name just a few. Even researchers studying the most intricate details of the components of a particular system are acutely aware of the need to understand how these components fit together to create a whole system.

The study of collective phenomena is founded on the idea that a set of techniques can be applied to understand systems at many different physical scales. This idea originated from mathematics, theoretical physics, and chemistry. Books by Wiener (1948), Ashby (1947), von Bertalanffy (1968) and Nicolis & Prigogine (1977) all aimed at providing a framework for the study of collective phenomena. Von Bertalanffy argued for the existence of general growth laws of social entities as diverse as manufacturing companies, urbanization, and Napoleon’s empire. Wiener argued that homeostasis, a stable functioning of natural systems, could be achieved through simple feedback loops. Nicolis and Prigogine aimed to . . .

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.