The Cylinder: Kinematics of the Nineteenth Century

The Cylinder: Kinematics of the Nineteenth Century

The Cylinder: Kinematics of the Nineteenth Century

The Cylinder: Kinematics of the Nineteenth Century

Synopsis

The Cylinder investigates the surprising proliferation of cylindrical objects in the nineteenth century, such as steam engines, phonographs, panoramas, rotary printing presses, silos, safety locks, and many more. Examining this phenomenon through the lens of kinematics, the science of forcing motion, Helmut Müller-Sievers provides a new view of the history of mechanics and of the culture of the industrial revolution, including its literature, that focuses on the metaphysics and aesthetics of motion. Müller-Sievers explores how nineteenth-century prose falls in with the specific rhythm of cylindrical machinery, re-imagines the curvature of cylindrical spaces, and conjoins narrative progress and reflection in a single stylistic motion. Illuminating the intersection of engineering, culture, and literature, he argues for a concept of culture that includes an epoch's relation to the motion of its machines.

Excerpt

The nineteenth century abounds in cylinders. Locomotives and paper machines, gasholders and Yale locks, sanitation pipes and wires, rotary printing presses and steam rollers, silos and conveyor belts, kymographs and phonographs, panoramas and carousels, tin cans and top hats—each of these objects is based on the cylindrical form, and each could be—and some have been—the starting point for a comprehensive interpretation of the epoch’s culture. To state it in the form of a necessary condition, without the cylinder the Industrial Revolution, and the culture it brought forth, would be unthinkable.

How can we account sufficiently for this proliferation of cylindrical objects and processes? the answers given in the following pages are at the same time obvious and recondite, factual and metaphysical, technical and historical. in their most basic form, they amount to the proposition that cylinders allow the isolation, transmission, conversion, and application of rotational and translational (straight-line) motion in machines. the displacement of translational motion is necessary to do work; but since machines and mechanisms are (like their makers) finite, this motion has to be “returned.” Translational motion has to be forced into reciprocating and rotational motion, while rotational motion has to be forced and anchored by straight guides and frames. the cylinder embodies both translational motion along its axis and rotational motion around its wall. Because every point on the cylinder’s wall is equidistant from its central axis, the wall’s . . .

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.