# Teaching Mathematics

## mathematics

mathematics, deductive study of numbers, geometry, and various abstract constructs, or structures; the latter often
"abstract"
the features common to several models derived from the empirical, or applied, sciences, although many emerge from purely mathematical or logical considerations. Mathematics is very broadly divided into foundations, algebra, analysis, geometry, and applied mathematics, which includes theoretical computer science.

**Branches of Mathematics****Foundations**

The term *foundations* is used to refer to the formulation and analysis of the language, axioms, and logical methods on which all of mathematics rests (see logic; symbolic logic). The scope and complexity of modern mathematics requires a very fine analysis of the formal language in which meaningful mathematical statements may be formulated and perhaps be proved true or false. Most apparent mathematical contradictions have been shown to derive from an imprecise and inconsistent use of language. A basic task is to furnish a set of axioms effectively free of contradictions and at the same time rich enough to constitute a deductive source for all of modern mathematics. The modern axiom schemes proposed for this purpose are all couched within the theory of sets, originated by Georg Cantor, which now constitutes a universal mathematical language.**Algebra**

Historically, algebra is the study of solutions of one or several algebraic equations, involving the polynomial functions of one or several variables. The case where all the polynomials have degree one (systems of linear equations) leads to linear algebra. The case of a single equation, in which one studies the roots of one polynomial, leads to field theory and to the so-called Galois theory. The general case of several equations of high degree leads to algebraic geometry, so named because the sets of solutions of such systems are often studied by geometric methods.

Modern algebraists have increasingly abstracted and axiomatized the structures and patterns of argument encountered not only in the theory of equations, but in mathematics generally. Examples of these structures include groups (first witnessed in relation to symmetry properties of the roots of a polynomial and now ubiquitous throughout mathematics), rings (of which the integers, or whole numbers, constitute a basic example), and fields (of which the rational, real, and complex numbers are examples). Some of the concepts of modern algebra have found their way into elementary mathematics education in the so-called new mathematics.

Some important abstractions recently introduced in algebra are the notions of category and functor, which grew out of so-called homological algebra. Arithmetic and number theory, which are concerned with special properties of the integers—e.g., unique factorization, primes, equations with integer coefficients (Diophantine equations), and congruences—are also a part of algebra. Analytic number theory, however, also applies the nonalgebraic methods of analysis to such problems.**Analysis**

The essential ingredient of analysis is the use of infinite processes, involving passage to a limit. For example, the area of a circle may be computed as the limiting value of the areas of inscribed regular polygons as the number of sides of the polygons increases indefinitely. The basic branch of analysis is the calculus. The general problem of measuring lengths, areas, volumes, and other quantities as limits by means of approximating polygonal figures leads to the integral calculus. The differential calculus arises similarly from the problem of finding the tangent line to a curve at a point. Other branches of analysis result from the application of the concepts and methods of the calculus to various mathematical entities. For example, vector analysis is the calculus of functions whose variables are vectors. Here various types of derivatives and integrals may be introduced. They lead, among other things, to the theory of differential and integral equations, in which the unknowns are functions rather than numbers, as in algebraic equations. Differential equations are often the most natural way in which to express the laws governing the behavior of various physical systems. Calculus is one of the most powerful and supple tools of mathematics. Its applications, both in pure mathematics and in virtually every scientific domain, are manifold.**Geometry**

The shape, size, and other properties of figures and the nature of space are in the province of geometry. Euclidean geometry is concerned with the axiomatic study of polygons, conic sections, spheres, polyhedra, and related geometric objects in two and three dimensions—in particular, with the relations of congruence and of similarity between such objects. The unsuccessful attempt to prove the
"parallel postulate"
from the other axioms of Euclid led in the 19th cent. to the discovery of two different types of non-Euclidean geometry.

The 20th cent. has seen an enormous development of topology, which is the study of very general geometric objects, called topological spaces, with respect to relations that are much weaker than congruence and similarity. Other branches of geometry include algebraic geometry and differential geometry, in which the methods of analysis are brought to bear on geometric problems. These fields are now in a vigorous state of development.**Applied Mathematics**

The term *applied mathematics* loosely designates a wide range of studies with significant current use in the empirical sciences. It includes numerical methods and computer science, which seeks concrete solutions, sometimes approximate, to explicit mathematical problems (e.g., differential equations, large systems of linear equations). It has a major use in technology for modeling and simulation. For example, the huge wind tunnels, formerly used to test expensive prototypes of airplanes, have all but disappeared. The entire design and testing process is now largely carried out by computer simulation, using mathematically tailored software. It also includes mathematical physics, which now strongly interacts with all of the central areas of mathematics. In addition, probability theory and mathematical statistics are often considered parts of applied mathematics. The distinction between pure and applied mathematics is now becoming less significant.

**Development of Mathematics**

The earliest records of mathematics show it arising in response to practical needs in agriculture, business, and industry. In Egypt and Mesopotamia, where evidence dates from the 2d and 3d millennia BC, it was used for surveying and mensuration; estimates of the value of π (pi) are found in both locations. There is some evidence of similar developments in India and China during this same period, but few records have survived. This early mathematics is generally empirical, arrived at by trial and error as the best available means for obtaining results, with no proofs given. However, it is now known that the Babylonians were aware of the necessity of proofs prior to the Greeks, who had been presumed the originators of this important step.**Greek Contributions**

A profound change occurred in the nature and approach to mathematics with the contributions of the Greeks. The earlier (Hellenic) period is represented by Thales (6th cent. BC), Pythagoras, Plato, and Aristotle, and by the schools associated with them. The Pythagorean theorem, known earlier in Mesopotamia, was discovered by the Greeks during this period.

During the Golden Age (5th cent. BC), Hippocrates of Chios made the beginnings of an axiomatic approach to geometry and Zeno of Elea proposed his famous paradoxes concerning the infinite and the infinitesimal, raising questions about the nature of and relationships among points, lines, and numbers. The discovery through geometry of irrational numbers, such as 2, also dates from this period. Eudoxus of Cnidus (4th cent. BC) resolved certain of the problems by proposing alternative methods to those involving infinitesimals; he is known for his work on geometric proportions and for his exhaustion theory for determining areas and volumes.

The later (Hellenistic) period of Greek science is associated with the school of Alexandria. The greatest work of Greek mathematics, Euclid's *Elements* (c.300 BC), appeared at the beginning of this period. Elementary geometry as taught in high school is still largely based on Euclid's presentation, which has served as a model for deductive systems in other parts of mathematics and in other sciences. In this method primitive terms, such as *point* and *line,* are first defined, then certain axioms and postulates relating to them and seeming to follow directly from them are stated without proof; a number of statements are then derived by deduction from the definitions, axioms, and postulates. Euclid also contributed to the development of arithmetic and presented a geometric theory of quadratic equations.

In the 3d cent. BC, Archimedes, in addition to his work in mechanics, made an estimate of π and used the exhaustion theory of Eudoxus to obtain results that foreshadowed those much later of the integral calculus, and Apollonius of Perga named the conic sections and gave the first theory for them. A second Alexandrian school of the Roman period included contributions by Menelaus (c.AD 100, spherical triangles), Heron of Alexandria (geometry), Ptolemy (AD 150, astronomy, geometry, cartography), Pappus (3d cent., geometry), and Diophantus (3d cent., arithmetic).**Chinese and Middle Eastern Advances**

Following the decline of learning in the West after the 3d cent., the development of mathematics continued in the East. In China, Tsu Ch'ung-Chih estimated π by inscribed and circumscribed polygons, as Archimedes had done, and in India the numerals now used throughout the civilized world were invented and contributions to geometry were made by Aryabhata and Brahmagupta (5th and 6th cent. AD). The Arabs were responsible for preserving the work of the Greeks, which they translated, commented upon, and augmented. In Baghdad, Al-Khowarizmi (9th cent.) wrote an important work on algebra and introduced the Hindu numerals for the first time to the West, and Al-Battani worked on trigonometry. In Egypt, Ibn al-Haytham was concerned with the solids of revolution and geometrical optics. The Persian poet Omar Khayyam wrote on algebra.**Western Developments from the Twelfth to Eighteenth Centuries**

Word of the Chinese and Middle Eastern works began to reach the West in the 12th and 13th cent. One of the first important European mathematicians was Leonardo da Pisa (Leonardo Fibonacci), who wrote on arithmetic and algebra (*Liber abaci,* 1202) and on geometry (*Practica geometriae,* 1220). With the Renaissance came a great revival of interest in learning, and the invention of printing made many of the earlier books widely available. By the end of the 16th cent. advances had been made in algebra by Niccolò Tartaglia and Girolamo Cardano, in trigonometry by François Viète, and in such areas of applied mathematics as mapmaking by Mercator and others.

The 17th cent., however, saw the greatest revolution in mathematics, as the scientific revolution spread to all fields. Decimal fractions were invented by Simon Stevin and logarithms by John Napier and Henry Briggs; the beginnings of projective geometry were made by Gérard Desargues and Blaise Pascal; number theory was greatly extended by Pierre de Fermat; and the theory of probability was founded by Pascal, Fermat, and others. In the application of mathematics to mechanics and astronomy, Galileo and Johannes Kepler made fundamental contributions.

The greatest mathematical advances of the 17th cent., however, were the invention of analytic geometry by René Descartes and that of the calculus by Isaac Newton and, independently, by G. W. Leibniz. Descartes's invention (anticipated by Fermat, whose work was not published until later) made possible the expression of geometric problems in algebraic form and vice versa. It was indispensable in creating the calculus, which built upon and superseded earlier special methods for finding areas, volumes, and tangents to curves, developed by F. B. Cavalieri, Fermat, and others. The calculus is probably the greatest tool ever invented for the mathematical formulation and solution of physical problems.

The history of mathematics in the 18th cent. is dominated by the development of the methods of the calculus and their application to such problems, both terrestrial and celestial, with leading roles being played by the Bernoulli family (especially Jakob, Johann, and Daniel), Leonhard Euler, Guillaume de L'Hôpital, and J. L. Lagrange. Important advances in geometry began toward the end of the century with the work of Gaspard Monge in descriptive geometry and in differential geometry and continued through his influence on others, e.g., his pupil J. V. Poncelet, who founded projective geometry (1822).**In the Nineteenth Century**

The modern period of mathematics dates from the beginning of the 19th cent., and its dominant figure is C. F. Gauss. In the area of geometry Gauss made fundamental contributions to differential geometry, did much to found what was first called analysis situs but is now called topology, and anticipated (although he did not publish his results) the great breakthrough of non-Euclidean geometry. This breakthrough was made by N. I. Lobachevsky (1826) and independently by János Bolyai (1832), the son of a close friend of Gauss, whom each proceeded by establishing the independence of Euclid's fifth (parallel) postulate and showing that a different, self-consistent geometry could be derived by substituting another postulate in its place. Still another non-Euclidean geometry was invented by Bernhard Riemann (1854), whose work also laid the foundations for the modern tensor calculus description of space, so important in the general theory of relativity.

In the area of arithmetic, number theory, and algebra, Gauss again led the way. He established the modern theory of numbers, gave the first clear exposition of complex numbers, and investigated the functions of complex variables. The concept of number was further extended by W. R. Hamilton, whose theory of quaternions (1843) provided the first example of a noncommutative algebra (i.e., one in which ab ≠ ba). This work was generalized the following year by H. G. Grassmann, who showed that several different consistent algebras may be derived by choosing different sets of axioms governing the operations on the elements of the algebra.

These developments continued with the group theory of M. S. Lie in the late 19th cent. and reached full expression in the wide scope of modern abstract algebra. Number theory received significant contributions in the latter half of the 19th cent. through the work of Georg Cantor, J. W. R. Dedekind, and K. W. Weierstrass. Still another influence of Gauss was his insistence on rigorous proof in all areas of mathematics. In analysis this close examination of the foundations of the calculus resulted in A. L. Cauchy's theory of limits (1821), which in turn yielded new and clearer definitions of continuity, the derivative, and the definite integral. A further important step toward rigor was taken by Weierstrass, who raised new questions about these concepts and showed that ultimately the foundations of analysis rest on the properties of the real number system.**In the Twentieth Century**

In the 20th cent. the trend has been toward increasing generalization and abstraction, with the elements and operations of systems being defined so broadly that their interpretations connect such areas as algebra, geometry, and topology. The key to this approach has been the use of formal axiomatics, in which the notion of axioms as
"self-evident truths"
has been discarded. Instead the emphasis is on such logical concepts as consistency and completeness. The roots of formal axiomatics lie in the discoveries of alternative systems of geometry and algebra in the 19th cent.; the approach was first systematically undertaken by David Hilbert in his work on the foundations of geometry (1899).

The emphasis on deductive logic inherent in this view of mathematics and the discovery of the interconnections between the various branches of mathematics and their ultimate basis in number theory led to intense activity in the field of mathematical logic after the turn of the century. Rival schools of thought grew up under the leadership of Hilbert, Bertrand Russell and A. N. Whitehead, and L. E. J. Brouwer. Important contributions in the investigation of the logical foundations of mathematics were made by Kurt Gödel and A. Church.**Bibliography**

See R. Courant and H. Robbins, *What Is Mathematics?* (1941); E. T. Bell, *The Development of Mathematics* (2d ed. 1945) and *Men of Mathematics* (1937, repr. 1961); J. R. Newman, ed., *The World of Mathematics* (4 vol., 1956); E. E. Kramer, *The Nature and Growth of Mathematics* (1970); M. Kline, *Mathematical Thought from Ancient to Modern Times* (1973); D. J. Albers and G. L. Alexanderson, ed., *Mathematical People* (1985).

*The Columbia Encyclopedia, 6th ed. Copyright© 2018, The Columbia University Press.*