Academic journal article Environmental Health Perspectives

Impact of the Phytoestrogen Content of Laboratory Animal Feed on the Gene Expression Profile of the Reproductive System in the Immature Female Rat

Academic journal article Environmental Health Perspectives

Impact of the Phytoestrogen Content of Laboratory Animal Feed on the Gene Expression Profile of the Reproductive System in the Immature Female Rat

Article excerpt

The effect of the dietary background of phytoestrogens on the outcome of rodent bioassays used to identify and assess the reproductive hazard of endocrine-disrupting chemicals is controversial. Phytoestrogens, including genistein, daidzein, and coumestrol, are fairly abundant in soybeans and alfalfa, common ingredients of laboratory animal diets. These compounds are weak agonists for the estrogen receptor (ER) and, when administered at sufficient doses, elicit an estrogenic response in vivo. In this study, we assessed the potential estrogenic effects of dietary phytoestrogens at the gene expression level, together with traditional biologic end points, using estrogen-responsive tissues of the immature female rat. We compared the gene expression profile of the uterus and ovaries, as a pool, obtained using a uterotrophic assay protocol, from intact prepubertal rats fed a casein-based diet (flee from soy and alfalfa) or a regular rodent diet (Purina 5001) containing soy and alfalfa. Estrogenic potency of the phytoestrogen-containing diet was determined by analyzing uterine wet weight gain, luminal epithelial cell height, and gene expression profile in the uterus and ovaries. These were compared with the same parameters evaluated in animals exposed to a low dose of a potent ER agonist [0.1 [micro]g/kg/day 17[alpha]-ethynyl estradiol (EE) for 4 days]. Exposure to dietary phytoestrogens or to a low dose of EE did not advance vaginal opening, increase uterine wet weight, or increase luminal epithelial cell height in animals fed either diet. Although there are genes whose expression differs in animals fed the soy/alfalfa-based diet versus the casein diet, those genes are not associated with estrogenic stimulation. The expression of genes well known to be estrogen regulated, such as progesterone receptor, intestinal calcium-binding protein, and complement component 3, is not affected by consumption of the soy/alfalfa-based diet when assessed by microarray or quantitative reverse transcriptase-polymerase chain reaction analysis. Our results indicate that although diet composition has an impact on gene expression in uterus and ovaries, it does not contribute to the effects of an ER agonist. Key words: 170[alpha]-ethynyl estradiol, gene expression profiling, immature rat uterotrophic assay, microarrays, phytoestrogens, rodent diet. Environ Health Perspect 112:1519-1526 (2004). doi:10.1289/ehp.6848 available via http://dx.doi.org/[Online 16 August 2004]

**********

The effect of the dietary background of phytoestrogens on the outcome of rodent bioassays used to identify and assess the reproductive hazard of endocrine-disrupting chemicals is controversial. Phytoestrogens, including genistein, daidzein, and coumestrol, are fairly abundant in soybeans and alfalfa, common ingredients of laboratory animal diets. In fact, soy and alfalfa are commonly used as protein sources in the manufacture of most rodent diets. Some of these ingredients are kmown to contain endocrine modulators, such as the phytoestrogens genistein and daidzein (abundant in soybeans and its products) and their respective glycosides (genistin and daidzin), and coumestrol (found in alfalfa). These phytoestrogens are able to bind to both estrogen receptor (ER) isoforms, ER-[alpha] and ER-[beta], in vitro (Beck et al. 2003; Casanova et al. 1999). They have a higher affinity for ER-[beta] (Boue et al. 2003), but they activate both ER isoforms, although with less potency than estradiol. Both genistein and daidzein have much weaker affinities than does 17[beta]3-estradiol for the rat ERs: genistein binds 3- and 100fold weaker, and daidzein binds 60- and 1,000-fold weaker to rat ER-[beta] and ER-[alpha], respectively (Boue et al. 2003; Casanova et al. 1999). These two phytoestrogens are able to elicit estrogenic responses in vivo (Boettger-Tong et al. 1998; Brown and Setchell 2001; Degen et al. 2002; Jefferson et al. 2002; Levy et al. 1995; Odum et al. 2001; Thigpen et al. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.