Academic journal article Forensic Science Communications

Sexual Dimorphism in Femora: An Indian Study

Academic journal article Forensic Science Communications

Sexual Dimorphism in Femora: An Indian Study

Article excerpt

Abstract

In the field of forensic osteology, determining sex from skeletal remains, especially from isolated bones, has been an age-old problem. This study documents efforts to determine sex by using five measurements from the femur. The study is based on 200 male and 80 female femora from central India. The data are analyzed using discriminant function procedures, and results of different measurements are reported independently and in various combinations. Three variables combined into a function could correctly assign sex to 92 percent of males and 96.3 percent of females.

Introduction

The role of the skeleton in estimating attributes such as age, sex, race, stature, and the presence of disease is discussed by Krogman and Iscan (1986). They stated that the record of organic evolution is largely written by the hard parts of the body recognizable even after many years of death. Sex determination from skeletal remains, which forms an important component in the identification procedure, sometimes becomes a difficult task for the forensic anthropologist, especially in the absence of the pelvis. Therefore, most of the long bones, either individually or in combination, have been subjected to statistical and morphological analysis for the purpose of determining sex. So far, several studies conducted for assessing sex from various skeletal parts have reiterated that there is a size difference between populations and that metric standards must be developed for each group. Citing the example of the femur, studies have been reported on various populations including the Finns (Lofgren 1956); French (Godycki 1957); Japanese (Hanihara 1958); Australian aborigines (Davivongs 1963); English (Steel 1972); American blacks, whites, and Indians (Black 1978; DiBennardo and Taylor 1979 and 1982; Iscan and Miller-Shaivitz 1984 and 1986); Italians (Pettener 1979); Czechs (Cerny and Komenda 1980); prehistoric Scottish (MacLaughlin and Bruce 1985); archeological remains of Sudanese Nubians, Pecos Pueblo Indians, and Arikaras (France 1988); Chinese (Liu 1989; Iscan and Shihai 1995); Spanish (Trancho et al. 1997); Nigerians (Asala et al. 1998); Thais (King et al. 1998); South African whites and blacks (Asala 2001; Steyn and Iscan 1997); and Germans (Mall et al. 2000). Little work on the subject has been reported from India except for the study by Singh and Singh (1972A and 1972B) on the head of femur. To date, nothing has been published on other measurements of the femur, which may be useful if the bone is fragmented. This study is an attempt to examine the sexual dimorphism in femora of Indian origin.

This study on sexual dimorphism is based on the principle that the axial skeleton weight of the male is relatively and absolutely heavier than that of the female (William et al. 1989), and the initial impact of this weight is borne by the femur in transmission of the body weight. Another factor that makes its indentation on the femur is the modification of the female pelvis with respect to its specialized function of reproduction. Therefore, the stress and strain experienced by the femur is different in a male than it is in a female.

Materials and Methods

Data for this study are comprised of 280 dry adult femora from 200 male and 80 female residents of central India. The collection was housed at the Medico-Legal Institute of Bhopal, India. Abnormal or pathologically deformed bones were excluded from the study. Most of the bones in the collection, stored since 1973, are forensic specimens, and only a few are unclaimed specimens. Every care had been taken by the authors to include bones from a homogenous population. Information on probable age at death, race, sex, date of arrival, and probable cause of death were well documented in a register after examination. The bones were preserved in iron boxes coded with a serial number.

In order to test for bilateral variation in the measurements, 20 sets of femora were subjected to a paired t-test. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.