Academic journal article The Science Teacher

Champagne Patterns and Lake Nyos

Academic journal article The Science Teacher

Champagne Patterns and Lake Nyos

Article excerpt

Carbon dioxide bubbles in a glass of champagne rise to the surface in fine threads, which are made of bubble groupings that change over time. Researchers from French and Brazilian universities have produced a new model that accounts for the patterns in strings of bubbles in champagne and other effervescent fluids. The research appears in Physical Review E. According to the researchers, the work could be important in understanding bubbles formed of dissolved gasses in other situations, such as nitrogen bubbles that grow in the blood vessels of surfacing divers and can cause decompression sickness, and the explosive release of carbon dioxide gas from Cameroon's Lake Nyos that killed thousands of people in 1986 (Editor's note: see the feature article about Lake Nyos on page 40).

[ILLUSTRATION OMITTED]

Initially, champagne bubbles rise in strings made of bubble pairs. As time passes the groupings vary in number, and then turn into strings of three bubbles. Finally, they settle down into evenly spaced single bubbles.

The bubbles rise from nucleation points on the glass wall. The nucleation points are small defects in the glass that trap tiny vibrating pockets of carbon dioxide. Dissolved gas in the champagne gradually collects in a vibrating bubble inside the defect, causing it to grow and soon expel gas from the defect, forming another bubble that sticks to the outside of the defect. That bubble, in turn, grows as more dissolved carbon dioxide collects inside it and it eventually breaks free of the defect to rise through the champagne. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.