Academic journal article Journal of Environmental Health

Suggested Guidelines for Remediation of Damage from Sewage Backflow into Buildings

Academic journal article Journal of Environmental Health

Suggested Guidelines for Remediation of Damage from Sewage Backflow into Buildings

Article excerpt

Introduction

Water is the single most long-term destructive substance in the indoor environment. It dissolves or weakens many materials and supports the growth of microorganisms on others. Because it flows, water has the capability to carry with it a wide variety of pathogens and allergens harmful to humans (1). In the best of worlds, buildings would be designed so that flooding would never occur; however, in the real world, water sometimes becomes out of control in every building. When a water emergency occurs, quick reaction to seepage, spillage, flooding, or backups has many benefits. Quick reaction often saves valuable property from direct water damage as well as destruction from microbial growth. The longer any kind of water damage goes untreated, the greater the damage. Immediate response to a water emergency saves time and money and protects property and health.

The primary objectives of controlling water damage are well known to professional restorers and public health professionals. These objectives are to protect public health, immediately remove harmful substances that enter into the environment with flowing water, restore the environment to a dry state, and salvage valuable property. The objectives are even more critical when flood waters contain animal or human body fluids or wastes (e.g., raw sewage) or other organic contaminants. Sewage poses a very significant threat to human health. However, the severity of the health threat depends on the content of the sewage and the degree and extent of penetration into the building environment. The degree of penetration is dependent on the porosity of contaminated materials, the quantity of sewage, and the amount of time the sewage remains in contact with materials. Consider three examples of sewage spilling into an indoor environment; the restoration response may be different in each situation.

Situation 1

A very limited quantity of waste that originates in the built environment is deposited or flows slightly beyond the confines of the sewage system. In this situation, the waste is found in one specific location, is contained, and does not penetrate the building structure. A limited amount of contact time has occurred. An example of this situation might be waste that overflows in a bathroom and is deposited on and confined to a tile floor. In this situation, there is a limited quantity of waste, which is contained and does not contact absorbent materials. Decontamination, which includes water extraction, cleaning, and disinfection, can be effective in reducing this particular potential health risk.

Situation 2

Waste that originates in the built environment is deposited or flows beyond the confines of the building's disposal system. In this case, there is limited or confined flooding, but water and waste penetrate the structure and furnishings of the building. For example, flooding occurs in a men's room of an office building, water flows under a wall, and into the carpet of an adjacent hallway. In this case, there is a limited amount of waste that is confined to a relatively small area of the building, but it penetrates regions of the environment that have complex surfaces and are difficult to restore. Effective restoration involves decontamination (as in Situation 1) and drying all surfaces that have been in contact with the sewage. In the case of stretch-in carpet, lifting and cleaning the contaminated carpet, disposing of the cushion, and treating both sides of the carpet thoroughly with a disinfectant are all necessary. Affected porous wall materials need to be treated with a disinfectant and evaluated for replacement. Because of the confinement of the sewage spill, aggressive, comprehensive treatment can be effective.

Situation 3

Waste that originates in the built environment, along with other wastes from the main line of the sewage system, is backed up into the immediate environment, where the waste is widely dispersed and penetrates both the structure and its furnishings. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.