Academic journal article Cartography and Geographic Information Science

Web Cellular Automata: A Forest Fire Modeling Approach and Prototype Tool

Academic journal article Cartography and Geographic Information Science

Web Cellular Automata: A Forest Fire Modeling Approach and Prototype Tool

Article excerpt


Rapid advances in computer processing and visualization capabilities, coupled with the decreasing costs of personal computers, have allowed a wider end-user group to access advanced GIS, spatial modeling, and visualization technologies. Consequently, the development of GIS-based applications and environmental models on standalone desktop computers and workstations within small networks has become an established practice for small businesses, consulting companies, governments, and academics. However these standalone applications and models suffer from many limitations that include platform dependence, limited end-user access, and inefficient data and information dissemination.

The use of Internet technology can overcome many limitations of stand-alone GIS applications and environmental models (A1-Sabhan et al. 2003). The Internet is an interconnected system of net works linking computers around the globe, regardless of geographic location. Internet technology has evolved rapidly during the last decade, and the Internet and world wide web (WWW) are now firmly recognized as effective means of exchanging geospatial data (Rohrer and Swing 1997; Doyle et al. 1998).

GIS applications on the Internet can be traced back to the second half of the 1990s. Internet GIS is a network-based GIS utilizing both the wired and wireless Internet to provide access to remote geospatial data and geo-processing tools (Peng 1999). The structure is based on a client/ server arrangement with functions for presentation, program logic, and database management distributed between the client and server computers. The world wide web is a networking and an information-sharing application based on the HTTP protocol that extends the Internet framework. Most Internet GIS applications use the web to exchange data, perform limited spatial analysis, and visualize results. Hence, the term Web-based GIS or Web GIS is often used for this kind of GIS extension (Peng and Tsou 2003).

Deploying GIS applications on the Internet is more advantageous than using stand-alone applications (Xie and Yapa 2006; Bellasio and Bianconi 2005; Al-Sabhan et al. 2003). Models on the Internet can be accessed by multiple users at different geographical locations, thus leading to increased involvement of stakeholders in the decision-making process. This in turn allows further communication and collaboration in decision-making (Dragicevic and Balram 2004; Mustajoki et al. 2004; Li 2006). Remote databases can be accessed in different geographical locations as well as in real time. Data security and integrity can be maintained more efficiently on data servers, by specifying varying degrees of permission for different users. Moreover, there is no need for specific GIS or modeling software on the client computer, thereby allowing application and database upgrades and debugging from a central location. By providing a consistent and user-friendly interface with essential tools and functionality for the specific application, the end-user is more focused on the tasks and goals for solving the problem. Furthermore, GIS applications and models are not dependent on a specific hardware or operating system platform; an Internet connection and web browser are the only prerequisites for accessibility.

There exists a wide range of proprietary Web GIS software that is engrained within the GIS user and developer community. Examples software include Autodesk's MapGuide (Autodesk, Inc. 2007), ESRI's ArcIMS (ESRI 2007), ER Mapper's Image Web Server (ER Mapper 2007), GE SmallWorld's Internet Application Server (GE Energy 2007), Intergraph's Geomedia Web Map (Intergraph 2007) and MapInfo's MapXtreme (MapInfo 2007). Traditional Web GIS has been mainly limited to web mapping applications that serve static maps as raster images as well as more interactive vector-based thematic maps. Specifically, the functionality of Web GIS software technology is limited to common tasks such as pan and zoom, geo-coding and buffering, spatial queries, and feature extraction. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.