Physical Decline Linked to Myelin

Article excerpt

During this year's baseball playoffs, Chicago White Sox outfielder Ken Griffey Jr., 38, threw a picture-perfect strike from center field to home plate to stop an opposing player from scoring. The White Sox ultimately won the game by a single run and clinched the division title. Had Griffey been 40, it could be argued he might not have made the throw in time. That is because in middle age, we begin to lose myelin--the fatty sheath of "insulation" that coats our nerve axons and allows for fast signaling bursts in our brains.

Reporting in the online version of the journal Neurobiology of Aging, George Bartzokis, professor of psychiatry at the University of California--Los Angeles (UCLA) Semel Institute for Neuroscience and Human Behavior, and his colleagues compared how quickly a group of males ranging in age from 23--80 could perform a motor task and then correlated their performances to their brains' myelin integrity. The researchers found a striking correlation between the speed of the task and the integrity of myelination over the range of ages. In other words, after middle age, we start to lose the battle to repair the myelin in our brain, and our motor and cognitive functions begin a long, slow downhill slide.

The myelination of brain circuits follows an inverted U-shaped trajectory, peaking in middle age. Bartzokis and others have long argued that brain aging may be primarily related to the process of myelin breakdown. "Studies have shown us that as we age, myelin breakdown and repair are continually occurring over the brain's entire 'neural network,'" says Bartzokis, who is also a member of UCLA's Ahmanson--Lovelace Brain Mapping Center and the UCLA Laboratory of Neuro Imaging. "But in older age, we begin losing the repair battle. That means the average performance of the networks gradually declines with age at an accelerating rate."

The researchers proposed that cognitive, sensory, and motor processing speeds are all highly related to this decline. To test their hypothesis, they used one of the simplest and best understood tests of central nervous system processing speed: how fast an individual can tap their index finger. …


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.