Academic journal article Journal of College Science Teaching

Human Lung on a Chip

Academic journal article Journal of College Science Teaching

Human Lung on a Chip

Article excerpt

Researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard University, Harvard Medical School, and Children's Hospital Boston have created a device that mimics a living, breathing human lung on a microchip. The device, about the size of a rubber eraser, acts much like a lung in a human body and is made using human lung and blood vessel cells.

Because the lung device is translucent, it provides a window into the inner workings of the human lung without having to invade a living body. It has the potential to be a valuable tool for testing the effects of environmental toxins, absorption of aerosolized therapeutics, and the safety and efficacy of new drugs. Such a tool may help accelerate pharmaceutical development by reducing the reliance on current models, in which testing a single substance can cost more than $2 million.

"The ability of the lung-on-a-chip device to predict absorption of airborne nanoparticles and mimic the inflammatory response triggered by microbial pathogens provides proof-of-principle for the concept that organs-on-chips could replace many animal studies in the future," says Donald Ingber, founding director of Harvard's Wyss Institute.

With every human breath, air enters the lungs; fills microscopic air sacs called alveoli; and transfers oxygen through a thin, flexible, permeable membrane of lung cells into the bloodstream. It is this membrane--a three-layered interface of lung cells, a permeable extracellular matrix and capillary blood vessel cells--that does the lung's heavy lifting. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.