Academic journal article The American Biology Teacher

Doing an Ethnobotanical Survey in the Life Sciences Classroom

Academic journal article The American Biology Teacher

Doing an Ethnobotanical Survey in the Life Sciences Classroom

Article excerpt


On the basis of an ethnobotanical survey that we conducted on plant use by descendents of the Khoi-San people in the Northern Cape Province in South Africa, we introduce biology teachers to an adapted rapid-appraisal methodology that can be followed in the life sciences classroom. Such a project addresses a number of the content standards in the National Science Education Standards, such as science as a human endeavour, the nature of science, and the history of science. We also shed light on ethical considerations when engaging in an ethnobotanical survey, and address, among other issues, intellectual property rights. Examples are provided of how teachers in the United States can sensitize students to the rich ethnobotanical heritage of their country.

Key Words: Ethnobotanical surveys; indigenous knowledge; intellectual property rights; nature of science; life sciences teaching; medicinal plants.



The term ethnoecology has in recent years received considerable emphasis in international literature. With this term, we refer to studies that describe local peoples' interactions with the natural environment (Martin, 1995). Ethnobotany is the part of ethnoecology that concerns plants and has been defined by Balick and Cox (1996) as "the study of the relationships between plants and people" (ethno refers to the study of people, botany

the study of plants). Ethnobotany is therefore the study of the knowledge, skills, and daily uses of plants in a particular area that enable the people of the local community to get the most out of their natural environment. M. E. Jones and J. Hunter (unpubl. data) and M. Michie (unpubl. data) have identified a number of common themes embedded within indigenous knowledge that are intrinsic to its integration into the science curriculum, and they indicate that indigenous knowledge is characterized by the following:

* Based on experience

* Often tested over centuries of use

* Developed as a collective database of observable knowledge

* Adapted to local culture and environment

* Dynamic and changing: a living knowledge base

* Can be applied to problem solving

* Transmitted orally and sometimes encapsulated in metaphor

* Inseparably embedded in ethics, spirituality, metaphysics, ceremony, and social order

* Bridging the science of theory with the science of practice

* A holistic versus a reductionist (Western science) approach

* Ecologically based

* Contextualized versus decontextualized science

When dealing with indigenous knowledge (and ethnobotany) in the life sciences classroom, the danger always exists that one may unwittingly promote pseudoscience (De Beer & Whitlock, 2009). Howe (2009), in an article in The American Biology Teacher, provides a useful table of guiding questions that you can use in the classroom when discussing indigenous knowledge and the nature of science (refer to p. 401, table 2, in the September 2009 issue of ABT). Here, we provide you with a useful methodology to follow in the classroom, to incorporate ethnobotany in your teaching.

But why should we engage with such an ethnobotanical approach? There are three reasons: the preservation of indigenous knowledge for future generations, a curriculum-driven agenda, and a long-term economic perspective. The potential economic importance of plants cannot be overemphasized. Shelley (2009) refers to studies that indicate that 25-57% of prescription drugs sold in the United States or worldwide have at least one active compound that is derived or patterned after compounds isolated from natural products. Table 1 provides information on drugs that were discovered from ethnobotanical leads. However, in this article our focus will be mostly on the first two considerations, namely the preservation of indigenous knowledge, and curriculum considerations. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.