Academic journal article Environmental Health Perspectives

Urinary Biomarkers of Prenatal Atrazine Exposure and Adverse Birth Outcomes in the PELAGIE Birth Cohort

Academic journal article Environmental Health Perspectives

Urinary Biomarkers of Prenatal Atrazine Exposure and Adverse Birth Outcomes in the PELAGIE Birth Cohort

Article excerpt

BACKGROUND: Despite evidence of atrazine toxicity in developing organisms from experimental studies, few studies--and fewer epidemiologic investigations--have examined the potential effects of prenatal exposure.

OBJECTIVES: We assessed the association between adverse birth outcomes and urinary biomarkers of prenatal atrazine exposure, while taking into account exposures to other herbicides used on corn crops (simazine, alachlor, metolachlor, and acetochlor).

METHODS: This study used a case-cohort design nested in a prospective birth cohort conducted in the Brittany region of France from 2002 through 2006. We collected maternal urine samples to examine pesticide exposure biomarkers before the 19th week of gestation.

RESULTS: We found quantifiable levels of atrazine or atrazine mercapturate in urine samples from 5.5% of 579 pregnant women, and dealkylated and identified hydroxylated triazine metabolites in 20% and 40% of samples, respectively. The presence versus absence of quantifiable levels of atrazine or a specific atrazine metabolite was associated with fetal growth restriction [odds ratio (OR) = 1.5; 95% confidence interval (CI), 1.0-2.2] and small head circumference for sex and gestational age (OR = 1.7; 95% CI, 1.0--2.7). Associations with major congenital anomalies were not evident with atrazine or its specific metabolites. Head circumference was inversely associated with the presence of quantifiable urinary metolachlor.

CONCLUSIONS: This study is the first to assess associations of birth outcomes with multiple urinary biomarkers of exposure to triazine and chloroacetanilide herbicides. Evidence of associations with adverse birth outcomes raises particular concerns for countries where atrazine is still in use.

KEYWORDS: atrazine, environmental exposure, fetal growth, herbicides. Environ Health Perspect 119:1034-1041 (2011). doi:10.1289/ehp.l002775 [Online 2 March 2011]

Atrazine is a triazine herbicide used to control broadleaf and grassy weeds in crops, mainly corn and sorghum. Although the European Union banned atrazine in 2001 because it is a ubiquitous water contaminant, it is still used in > 70 countries, including the United States, Brazil, Argentina, Mexico, and China (LeBaron et al. 2008). In 2001, agricultural pesticide use in France was among the highest in Europe, averaging 3.4 kg/hectare of agricultural area (Benoit et al. 2005). The intensive regional agricultural activities from pig, poultry, and dairy farming in the Brittany region (northwestern France) make pesticide exposure a critical issue. Corn crops, especially animal feed corn, are common there. In 2001, experts estimated that 200 tons of atrazine was applied to 70% of the corn grown in Brittany, for an average of 0.620 kg of atrazine per hectare (Agreste Bretagne 2001). In 1997, the Ministry of Agriculture limited atrazine to 1 kg/ha/year; in 2002, it banned the sale of numerous products containing atrazine and, in October 2003, finally banned atrazine use. The primary replacements have been alachlor and acetochlor, both chloroacetanilide herbicides.

Once released into the environment, atrazine is transformed over time by various chemical, photochemical, and biologically mediated reactions into other compounds, called degradates or metabolites. Water contamination by atrazine and its degradates, including hydroxyatrazine and desethylatrazine, has decreased in Brittany since 2003, but many surveys still show environmental contamination in the region. Testing indicates that 27% of water samples from Breton rivers had atrazine levels > 0.1 [micro]g/L in 2003 compared with 10% of samples in 2004, and only 1% in 2007, whereas atrazine degradates were detected in 76% of water samples in 2003 and 20% in 2007 [Reseau CORPEP (Cellule d'Orientation Regionale pour la Protection des Eaux contre les Pesticides) 2008]. Atrazine residues were also detected in surface and underground sources of human drinking water (Marchand 2006). …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.