Academic journal article Environmental Health Perspectives

Individual Daytime Noise Exposure during Routine Activities and Heart Rate Variability in Adults: A Repeated Measures Study

Academic journal article Environmental Health Perspectives

Individual Daytime Noise Exposure during Routine Activities and Heart Rate Variability in Adults: A Repeated Measures Study

Article excerpt

Epidemiological studies indicate that noise exposure is associated with adverse cardio-vascular health effects (Babisch 2006; Ising and Kruppa 2004; Tomei et al. 2010). More precisely, studies on chronic noise exposure have suggested an association with elevated blood pressure (Chang et al. 2003; Fogari et al. 2001), hypertension or the use of antihypertensive medication (Barregard et al. 2009; Bluhm et al. 2007; de Kluizenaar et al. 2007; Jarup et al. 2008), ischemic heart disease including myocardial infarction (MI) (Babisch et al. 2005; Selander et al. 2009), and mortality from MI (Huss et al. 2010). Studies of short-term cardiovascular effects have reported elevated blood pressure levels and increased heart rate (HR) in association with noise exposure (Chang et al. 2009; Haralabidis et al. 2008; Lusk et al. 2004). Most previous studies have focused on effects of higher noise intensities that were generated by specific sources, particularly aircraft, road traffic, and occupational noise and noise produced in laboratory settings. Information about effects of individual noise exposure during everyday life, which may include a wide range of noise intensities, is very limited.

Underlying mechanisms linking noise to enhanced cardiovascular risk are rarely explored in epidemiological studies. A potential mechanistic pathway is that noise exposure serves as a stressor that increases the sympathetic tone of the autonomic nervous system, either directly or indirectly via hormone release, resulting in a "fight-or-flight" reaction (Babisch 2003; Babisch et al. 2001; Henry 1992; Ising et al. 2003). An effect of noise on the autonomic nervous system may be assessed through time-and frequency-domain analysis of heart rate variability (HRV) (Malik 1996). Decreased HRV is considered a risk factor for adverse cardiovascular events (Buccelletti et al. 2009; Gerritsen et al. 2001). For instance, a reduction in the standard deviation of normal-to-normal intervals (SDNN) is a better predictor of death due to progressive heart failure than are other conventional clinical measurements (Nolan et al. 1998). However, there have been relatively few studies of the association between noise exposure and HRV, and results have been inconsistent. Two experimental studies that examined the effects of white noise, which contains every frequency within the range of human hearing in equal amounts, found increased low frequency (LF) power but no changes in high frequency (HF) power in association with short-duration white noise, consistent with an effect mediated by an increase in sympathetic tone (Bjor et al. 2007; Lee et al. 2010). In contrast, authors of a recent field study reported a decrease in respiratory sinus arrhythmia associated with indoor traffic noise exposure during sleep, consistent with an effect mediated by a reduction in parasympathetic tone (Graham et al. 2009).

The objective of the present epidemiological study was to provide further insight into the biological mechanism of cardiovascular health effects associated with noise by investigating the acute effects of routine daytime noise exposure on HR and HRV parameters in individuals.

Methods

Study design. As part of the Rochester Particulate Matter Center investigations, a prospective panel study was conducted in Augsburg, Germany, between 19 March 2007 and 17 December 2008. Participants were recruited from the follow up examination of the KORA (Cooperative Health Research in the Region of Augsburg) survey 2000 (Holle et al. 2005), which was conducted in 2006-2008. In a baseline interview, participants gave information on health status, medication use, disease status, and smoking history. Because of several other objectives of the study, general exclusion criteria were smoking during the preceding 12 months, intake of platelet aggregation inhibitors except for acetylsalicylic acid, an MI and/or interventional procedure (e.g., bypass surgery) < 6 months before study entry, and chronic inflammatory diseases such as Crohn's disease, colitis ulcerosa, or rheumatoid arthritis. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.