Academic journal article Environmental Health Perspectives

Serum Polyfluoroalkyl Concentrations, Asthma Outcomes, and Immunological Markers in a Case-Control Study of Taiwanese Children

Academic journal article Environmental Health Perspectives

Serum Polyfluoroalkyl Concentrations, Asthma Outcomes, and Immunological Markers in a Case-Control Study of Taiwanese Children

Article excerpt

BACKGROUND: Perfluorinated compounds (PFCs) are ubiquitous pollutants. Experimental data suggest that they may be associated with adverse health outcomes, including asthma. However, there is little supporting epidemiological evidence.

METHODS: A total of 231 asthmatic children and 225 nonasthmatic controls, all from northern Taiwan, were recruited in the Genetic and Biomarkers study for Childhood Asthma. Structure questionnaires were administered by face-to-face interview. Serum concentrations of 11 PFCs and levels of immunological markers were also measured. Associations of PFC quartiles with concentrations of immunological markers and asthma outcomes were estimated using multivariable regression models.

RESULTS: Nine PFCs were detectable in most children ([greater than or equal to] 84.4%), of which perfluorooctane sulfonate (PFOS) was the most abundant (median serum concentrations of 33.9 ng/mL in asthmatics and 28.9 ng/mL in controls). Adjusted odds ratios for asthma among those with the highest versus lowest quartile of PFC exposure ranged from 1.81 (95% CI: 1.02, 3.23) for the perfluorododecanoic acid (PFDoA) to 4.05 (95% CI: 2.21, 7.42) for perfluorooctanic acid (PFOA). PFOS, PFOA, and subsets of the other PFCs were positively associated with serum IgE concentrations, absolute eosinophil counts (AEC), eosinophilic cationic protein (ECP) concentrations, and asthma severity scores among asthmatics.

CONCLUSIONS: This study suggests an association between PFC exposure and juvenile asthma. Because of widespread exposure to these chemicals, these findings may be of potential public health concern.

KEY WORDS: asthma, AEC, ECP, IgE, perfluorinated compounds. Environ Health Perspect 121:507-513 (2013). http://dx.doi.org/10.1289/ehp.1205351 [Online 8 January 2013]

Perfluorinated compounds (PFCs) include a class of human-made organic chemicals composed of a fluorinated carbon backbone of varying length, terminated by a carboxylate or sulfonate functional group. Such PFCs are extremely stable, thermally, biologically, and chemically, and additionally possess hydrophobic and lipophobic characteristics that enable products coated in them to repel both oil and water and resist staining (Conder et al. 2008; Hoffman et al. 2010). Accordingly, PFCs are widely used, for example in surfactants, emulsifiers, food packaging, nonstick pan coatings, fire-fighting foams, paper and textile coatings, and personal care products (Lau et al. 2007; Lindstrom et al. 2011; Renner 2001).

This combination of extreme resistance to degradation and environmental ubiquity has raised concerns in recent years (Giesy and Kannan 2001; Lau et al. 2007). Furthermore, studies have shown that PFCs accumulate among the higher trophic level of the food chain, such as predators and human beings (Conder et al. 2008; Houde et al. 2006; Noorlander et al. 2011). Although data from the National Health and Nutrition Examination Survey have indicated a decrease in serum PFC concentrations in the general U.S. population since the production of some PFCs has been phased out [for example, the average concentration of perfluorooctane sulfonate (PFOS) decreased from 30.4 ng/mL in 1999 to 13.2 ng/mL in 2008] (Kato et al. 2011), PFCs are still manufactured abroad (Paul et al. 2009). PFCs bioaccumulate by binding to proteins in the liver and serum, in contrast with many other persistent organic pollutants that persist primarily in adipose tissue (Conder et al. 2008), and they are slowly eliminated without biotransformation (Lau et al. 2007). Serum half-life estimates in an occupationally exposed cohort ranged from 5.4 years for PFOS to 8.5 years for perfluorohexane sulfonic acid (PFHxS) (Olsen et al. 2007).

Several attempts have been made to understand the toxicological hazards that may be associated with exposure. Early animal studies focused almost exclusively on exposure to PFOS and perfluorooctanic acid (PFOA), two of the most common PFCs. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.