Academic journal article Environmental Health Perspectives

Advancing the Next Generation of Health Risk Assessment

Academic journal article Environmental Health Perspectives

Advancing the Next Generation of Health Risk Assessment

Article excerpt

BACKGROUND: Over the past 20 years, knowledge of the genome and its function has increased dramatically, but risk assessment methodologies using such knowledge have not advanced accordingly.

OBJECTIVE: This commentary describes a collaborative effort among several federal and state agencies to advance the next generation of risk assessment. The objective of the NexGen program is to begin to incorporate recent progress in molecular and systems biology into risk assessment practice. The ultimate success of this program will be based on the incorporation of new practices that facilitate faster, cheaper, and/or more accurate assessments of public health risks.

Methods: We are developing prototype risk assessments that compare the results of traditional, data-rich risk assessments with insights gained from new types of molecular and systems biology data. In this manner, new approaches can be validated, traditional approaches improved, and the value of different types of new scientific information better understood.

DISCUSSION AND CONCLUSIONS: We anticipate that these new approaches will have a variety of applications, such as assessment of new and existing chemicals in commerce and the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Additionally, results of the effort are likely to spur further research and test methods development. Full implementation of new approaches is likely to take 10-20 years.

KEY WORDS: bioinformatics, molecular biology, NexGen, "omics," risk assessment, systems biology. Environ Health Perspect 120:1499-1502 (2012). http://dx.doi.org/10.1289/ehp.1104870 [Online 8 August 2012]

Risk assessment is a dominant public policy tool used to identify and evaluate scientific information to fulfill the missions of the U.S. Environmental Protection Agency (EPA) and other agencies by informing regulatory and technologic decisions, setting priorities for research, and supporting benefit-cost analyses [National Research Council (NRC) 2009]. The efficacy and timeliness of current risk assessment practices, however, are limited. Consequently, we are unable to evaluate the great number of new and existing chemicals, as well as emerging materials such as nanomaterials and biopolymers, entering the marketplace (NRC 2007; U.S. EPA 2009). Concomitantly, focus is increasing on the design and synthesis of less hazardous chemicals and processes, thus avoiding many environmental problems and fostering sustainability (Anastas and Eghbali 2010; Anastas et al. 2010; NRC 2011). We anticipate development and use of new higher throughput risk assessment methods to identify both safer and more toxic chemicals.

Several large, new health research efforts are developing approaches that use new technologies to modernize toxicity testing. Examples include Tox21 (Collins et al. 2008; Kavlock et al. 2009; U.S. EPA 2012a, 2012b), the National Institutes of Health's (NIH) National Institute of Environmental Health Sciences (NIEHS 2011), the National Toxicology Program (a multiagency effort headquartered at the NIEHS) (Bucher et al. 2011), the U.S. EPA's Chemical Safety for Sustainability research program (see Appendix 1), ToxCast[TM] (Dix et al. 2007; Judson et al. 2010a), and the Safety Evaluations Ultimately Replacing Animal Testing (SEURAT) research program (European Commission and European Cosmetics Association 2011). Of particular note is that the Tox21 program alone will generate new high throughput data on 10,000 chemicals, using > 100 assays, over the next few years.

Additionally, new European legislation, Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), aimed at ensuring chemical safety will generate substantial new "nonstandard" in vitro data (European Commission 2007; European Commission and European Cosmetics Association 2011). REACH legislation requires industry to provide information necessary for adequate evaluations of public health risks in response to concerns related to approximately 120,000 chemicals in European commerce, addressing a desire for increased assessment efficiencies and a reduced reliance on in vivo animal testing. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.