Global Grand Challenges for Engineering and International Development

Article excerpt

In March 2013, 450 of the world's top engineers, scientists, economists, designers, artists, philosophers, policymakers, and, importantly, students, convened at the Institution of Engineering and Technology in London for the inaugural "Global Grand Challenges Summit." The international meeting was a joint effort of the US National Academy of Engineering, the UK Royal Academy of Engineering., and the Chinese Academy of Engineering. The goal of the summit was to explore collaborative approaches for tackling global grand challenges, fostering a spirit of inter-disciplinary and international cooperation to meet the world's most pressing needs. The two-day conference was organized around six major themes: sustainability, health, education, enriching life, technology and growth, and resilience. The meeting was highlighted by several distinguished speakers, two of whom were particularly notable: on the first day, attendees were treated to a surprise visit and address from, a philanthropist and musician, who spoke of the need to recruit young people to science, technology, engineering, and mathematics--but also the arts. He advocated for "STEAM" education over and above "STEM". On the second day, attendees were addressed by Bill Gates, co-founder and trustee of the Bill and Melinda Gates Foundation; Gates discussed engineering solutions that would help the world's poorest people.

The conference opened with a plenary address by Dr. J. Craig Venter, a trailblazing US biologist who was one of the first to sequence the human genome and the first to create a cell with a synthetic genome. Venter noted that modern societies are completely dependent on science for food, water, fuel, and medicines, and argued that the goal of humanity has always been to have control over nature. According to Venter, disruptive change will be needed to meet the food, water, and fuel demands of a growing world population. He called DNA the "software of life" and he proposed that synthetic life will be part of the solution to meeting global demands.

Venter's plenary address led into a panel on sustainability which was headlined by Jeffrey Sachs, a US economist and Director of the Earth Institute at Columbia University, best known for his book The End of Poverty. Sachs defined sustainable development as three interconnected dimensions of a healthy society: (1) economic prosperity and the end of extreme poverty; (2) social inclusion; and (3) environmental sustainability, underpinned by peace and good governance, both public and private. Sachs identified key technologies for sustainable development, including sustainable agriculture, sustainable cities, population stabilization, and digital technology in health, education, and materials. A fellow panelist, Calestous Juma, a renowned Kenyan scholar and Professor of the Practice of International Development at the Harvard Kennedy School of Government, presented a perspective on sustainable technology development from developing countries. Juma observed that Africa has demonstrated the capability to innovate in hardware and software, and that it is easier to introduce novel technologies in settings where no incumbent industries exist; this presents a unique advantage for innovators in the developing world and must be emphasized in policy discussions.

A panel on healthcare followed the sustainability discussion. Among others, this panel featured Frances Arnold, a US scientist and engineer from the California Institute of Technology. Arnold argued that scientists and engineers must take inspiration from nature's solutions in order to invent technologies to meet global needs. …


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.