Academic journal article Environmental Health Perspectives

Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013

Academic journal article Environmental Health Perspectives

Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013

Article excerpt


Exposure to radon-222--an inert, odorless, and carcinogenic gas--is the second leading cause of lung cancer worldwide (Darby et al. 2005; Pawel and Puskin 2004). The U.S. Environmental Protection Agency (EPA) estimates that indoor radon exposure causes or contributes to about 21,000 lung cancer deaths in the United States annually (Pawel and Puskin 2004). In 1986, the U.S. EPA set an action level of 148 Bq/[m.sup.3] (4 pCi/L; there are 37 Bq/[m.sup.3] per pCi/L) based on the current state of radon testing and mitigation technologies [National Research Council (NRC) 1999a; U.S. EPA 1992].

Uranium-238 occurs naturally in soil and bedrock and decays to radium-226, which decays to radon. Both uranium-238 and radium-226 persist in the environment (half-lives of 4.5 billion years and 1,600 years, respectively). Radon-222 has a half-life of 3.8 days, and its radioactive decay products are responsible for its carcinogenicity. Pressure differentials between soil gas and indoor air cause the migration of radon through cracks and other openings into buildings, the primary source of indoor radon. Radium and radon are soluble in water, with concentrations increasing as salinity increases (Warner et al. 2012).

Several counties in eastern Pennsylvania overlie the Reading Prong, a physiographic section known to have high bedrock uranium concentrations (Gundersen 1991) and elevated indoor radon levels. The entire state has had some of the highest indoor radon levels in the United States. The Pennsylvania Department of Environmental Protection (PADEP) established a Radon Division that administers a program of radon monitoring and remediation (http://www.portal. radon_division/21923).

U.S. Geological Survey (USGS) analysis of 548,547 indoor and short-term radon test results compiled by the PADEP during 1990-2007 reported that 39% of radon tests exceeded the U.S. EPA action level and that concentrations varied dramatically by geologic unit, a rock layer of a given lithology and geologic period (e.g., Annville Formation, high-calcium limestone from the Ordovician period) (Gross 2013). Geologists have identified 195 geologic units in Pennsylvania. Other factors that have been associated with higher indoor radon levels include the use of radon-rich well water [Folger et al. 1994; United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2009], colder months, less precipitation, more expensive housing, rural area, and higher individual socioeconomic status (SES) (Cohen and Gromicko 1988; Folger et al. 1994; UNSCEAR 2009). Radon is present in natural gas used for cooking and heating; calculations performed in the 1970s suggested that it would not be expected to result in an increase in indoor radon levels (Johnson et al. 1973). Radon can also enter buildings from ambient air; however, outdoor radon concentrations are generally low, around 10 Bq/[m.sup.3], but can range from 1 to 100 Bq/[m.sup.3] (UNSCEAR 2009).

The development of unconventional natural gas in the Marcellus shale in Pennsylvania has the potential to exacerbate several pathways for entry of radon into buildings. The USGS reported 91,020 Bq/[m.sup.3] (n = 14) as the median radium concentration in produced water from Marcellus wells (Rowan et al. 2011), a value nearly 500 times the federal drinking water limit (185 Bq/[m.sup.3]) and one that far exceeds the industrial discharge limit of 2,220 Bq/[m.sup.3]. Underground, radon collects in porous geological formations and thus in natural gas production wells (Gogolak 1980). Shales also tend to contain both higher concentrations of uranium (3.7-40 ppm) than other geologic formations and higher concentrations of radon in their natural gas (Gogolak 1980). The USGS reported preliminary data from 11 wellheads in Pennsylvania with corrected concentrations of radon (devices were calibrated for air measurement, but used in natural gas with correction factor = gas measurement x 1. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.