Academic journal article Environmental Health Perspectives

Poultry Consumption and Arsenic Exposure in the U.S. Population

Academic journal article Environmental Health Perspectives

Poultry Consumption and Arsenic Exposure in the U.S. Population

Article excerpt

Introduction

In populations with low arsenic levels in drinking water, exposure to inorganic arsenic (iAs) occurs mainly through diet, particularly through the consumption of rice and other grains, as well as some juices and wine [Davis et al. 2012; deCastro et al. 2014; U.S. Food and Drug Administration (FDA) 2014a; Navas-Acien et al. 2011]. iAs is a toxic and carcinogenic metalloid that occurs naturally in water, air, and soil and enters the food supply through geological releases, contaminated water, and anthropogenic sources such as pesticide residue, nonferrous metal smelting, and waste incineration [Agency for Toxic Substances and Disease Registry (ATSDR) 2007]. Increasing evidence suggests that mono- and dimethylated metabolites of inorganic arsenic [monomethylarsonate (MMA) and dimethylarsinate (DMA), respectively] may cause oxidative stress and cytotoxicity and may be carcinogenic depending on the valence state [Hughes 2002; International Agency for Research on Cancer (IARC) 2012a]. Little is known, however, about the potential independent contribution of poultry intake to arsenic exposure in human populations.

Arsenic-based drugs (roxarsone, used in chickens, and nitarsone, used in turkeys) were deliberately used in U.S. poultry production for decades, potentially representing an unnecessary and easily controllable source of exposure to iAs, MMA, DMA, and roxarsone/nitarsone in the population (Liu et al. 2016; Nachman et al. 2016; Silbergeld and Nachman 2008). The FDA withdrew marketing approvals for roxarsone and for two other arsenic-based feed additives in 2013, and they withdrew approval for nitarsone, which is used to prevent histomoniasis in turkeys, in December of 2015 (FDA 2014b, 2015; Abraham et al. 2013). Historical use of nitarsone in turkey production and of roxarsone in chicken production may thus have been a chronic source of arsenic exposure for the U.S. population and may be ongoing in other parts of the world (Yao et al. 2013).

In 2010, it was estimated that ~88% of broiler chickens available at market had been treated with roxarsone (Nachman et al. 2012). A similar estimate is not available for nitarsone, but turkey industry representatives have reported that nitarsone was used seasonally during hot-weather months in young turkeys that were consumed during the fall/winter (Aubrey 2013). Analyses of chicken meat have shown that the use of roxarsone during chicken production likely contributes to elevated iAs, DMA, and other unknown arsenic species in chicken meat and that the concentration of iAs increases with cooking (Nachman et al. 2013). Analyses of turkey meat have also shown that the use of nitarsone during turkey production likely contributes to elevated iAs, MMA, and other unknown arsenic species in turkey meat (Nachman et al. 2016). In a recent feeding study, iAs, MMA, DMA, roxarsone, and an unidentified roxarsone metabolite were elevated in the meat of chickens fed a roxarsone-supplemented diet compared with the levels of those compounds in chickens fed a non-roxarsone diet (Liu et al. 2016). However, it is unknown if consumption of poultry exposed to arsenic-based drugs results in increased arsenic exposure and internal dose in the population, as reflected in urinary excretion.

The National Health and Nutrition Examination Survey (NHANES) collects 24-hr dietary recall information the same day that a spot urine sample is collected for total and speciated arsenic analysis [U.S. National Center for Health Statistics (NCHS) 2014]. Previous studies in NHANES have evaluated poultry consumption as a potential confounder of dietary arsenic exposure (Davis et al. 2012) or in analyses without accounting for other dietary sources of arsenic such as seafood (deCastro et al. 2014). Our objective was to evaluate whether consumption of poultry in the past 24 hr was associated with increased arsenic exposure as measured in urine by total arsenic and DMA during a time period when arsenic-based poultry drugs were approved for use in the United States. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.