Academic journal article Environmental Health Perspectives

Toward Consistent Methodology to Quantify Populations in Proximity to Oil and Gas Development: A National Spatial Analysis and Review

Academic journal article Environmental Health Perspectives

Toward Consistent Methodology to Quantify Populations in Proximity to Oil and Gas Development: A National Spatial Analysis and Review

Article excerpt

Introduction

Background

A number of studies indicate that there may be negative health outcomes associated with living in close proximity to oil and gas development. Degraded air quality; surface water, groundwater and soil contamination; and elevated noise and light pollution are exposure pathways that contribute to potential human health impacts (Adgate et al. 2014; Hays et al. 2017; Shonkoff et al. 2014). Studies have identified multiple symptoms reported by residents living with oil and gas infrastructure in their communities, including respiratory symptoms, such as nose, eye, and throat irritation; headaches; and fatigue, among others (Macey et al. 2014; Rabinowitz et al. 2015; Steinzor et al. 2013; Tustin et al. 2017). One study has pointed to increased hospitalization rates for multiple medical categories, including cardiology, neurology, and oncology (Jemielita et al. 2015). Increased asthma incidence and severity has also been reported in Pennsylvania (Rasmussen et al. 2016). Preliminary epidemiological studies that use distance of oil and gas development as the exposure metric have found positive associations with adverse birth outcomes, including preterm birth (Casey et al. 2016), lower birth weight, and small for gestational age (Stacy et al. 2015), as well as neural tube defects and congenital heart defects (McKenzie et al. 2014). McKenzie et al. (2017) also identified increased incidence of childhood hematologic cancer among children that live in close proximity to oil and gas development compared to those that live farther away. While many findings in the public health literature on oil and gas development are sometimes inconsistent and studies often lack the designs to arrive at causal claims, the body of literature serves as an indication that proximity to oil and gas development is associated with adverse health risks and impacts.

Previous Population Proximity Studies

Public concern and the public health scientific literature to date has spurred interest in quantitative assessments of populations potentially at increased risk of health impacts from living in close proximity to oil and gas development. Four peer-reviewed studies were published in the last 2 y: two reporting population counts (Meng 2015; Slonecker and Milheim 2015), and three reporting demographic subgroups (Clough and Bell 2016; Ogneva-Himmelberger and Huang 2015; Slonecker and Milheim 2015). Three additional studies were identified in the gray literature (Earthworks et al. 2016; Ridlington et al. 2015; Srebotnjak and Rotkin-Ellman 2014). The earliest study we could identify was published in The Wall Street Journal (Gold and McGinty 2013). This early study has substantial methodological flaws, but is included in our review because it was the first published attempt to quantify populations near oil and gas wells.

Conventional and Unconventional Well Types

Of the eight proximity studies published, five focus their analyses explicitly on unconventional wells. This is in part due to the increased public and academic interest in the impacts of the rapid expansion of unconventional oil and gas development over the past decade. The recent increase in unconventional oil, gas, and other hydrocarbon production is enabled by recent technological advances consisting primarily of the pairing of directional well drilling and high-volume hydraulic fracturing in shale formations (Ratner and Tiemann 2015).

While public controversies have largely focused on human health impacts of unconventional gas development, it is important to recognize that both conventional and unconventional oil and gas development involve emissions of hazardous air pollutants and other harmful air emissions that can present risks to human health (Adgate et al. 2014; Dusseault and Jackson 2014; Field et al. 2014; Jackson et al. 2014; Pekney et al. 2014; Shires et al. 2009; Zammerilli et al. 2014). Detectable levels of harmful pollutants, including particulate matter, nitrogen oxides, ozone, volatile organic carbons (VOCs), carbon monoxide, and in some locations, hydrogen sulfide, are commonly reported on and near hydrocarbon well sites and areas of associated infrastructure (Gilman et al. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.