Academic journal article Environmental Health Perspectives

Exposure to Perfluoroalkyl Substances and Metabolic Outcomes in Pregnant Women: Evidence from the Spanish INMA Birth Cohorts

Academic journal article Environmental Health Perspectives

Exposure to Perfluoroalkyl Substances and Metabolic Outcomes in Pregnant Women: Evidence from the Spanish INMA Birth Cohorts

Article excerpt

Introduction

Perfluoroalkyl substances (PFASs) have been used in many applications since the 1950s, including industrial applications and consumer products (Casals-Casas and Desvergne 2011). PFASs bioaccumulate in the food chain and in animal and human tissues, and exposure persists in the environment and living organisms for years (Wang et al. 2014). The routes of human exposure to PFASs include diet (animal and plant-based foods), migration from packaged foods, drinking water, and inhalation of indoor dust (Wang et al. 2014). Detectable blood levels of PFASs have been reported in pregnant women in Spain (Manzano-Salgado et al. 2015) and in other European (Gebbink et al. 2015), North American (Kato et al. 2014), Asian (Okada et al. 2013), and African (Hanssen et al. 2010) regions. PFAS exposure may pass from mother to child through the placenta (Manzano-Salgado et al. 2015) and through breast milk (Mogensen et al. 2015).

Evidence from epidemiological studies suggests that exposures to PFASs and to other endocrine-disrupting chemicals (EDCs) (i.e., synthetic substances that have been shown to alter the function of the endocrine system in intact organisms) may contribute to obesity (de Cock and van de Bor 2014), lipid alterations (Kabir et al. 2015), diabetes (Taylor et al. 2013), and to autoimmune diseases and inflammation (Kuo et al. 2012). A study of female CD-1 mice reported that mice exposed to low doses of perfluorooctanoate (PFOA) in utero had higher serum insulin and leptin concentrations at 21-33 wk of age than controls (Hines et al. 2009). Rats exposed to PFOA or perfluorooctane sulfonate (PFOS) were reported to have lower total serum cholesterol levels and to show evidence of liver toxicity compared with controls (Lau et al. 2007). Experimental evidence further supports that PFOA and PFOS exposures may alter inflammatory responses and the production of cytokines (DeWitt et al. 2012) that play a role in the pathogenesis of metabolic diseases (Caer et al. 2017).

Few epidemiological studies have evaluated associations between PFAS exposures and metabolic outcomes, and findings have been inconclusive. A cross-sectional study of 571 adults in Taiwan reported that PFOS was positively associated with prevalent diabetes, but associations with other PFAS compounds were negative (inverse) (Su et al. 2016). A prospective cohort study of 258 pregnant women in the United States reported a positive association between serum PFOA concentrations and gestational diabetes mellitus (GDM); associations of other PFASs were positive but close to the null (Zhang et al. 2015). However, a prospective study of 1,274 pregnant women in Canada reported limited evidence of a positive association with GDM for plasma perfluorohexane sulfonate (PFHxS) (significant for the second vs. first quartile comparison only) and no evidence of associations for PFOA or PFOS (Shapiro et al. 2016). Similarly, a recent study of 604 pregnant Faroese women that used a multiple-pollutant modeling approach found no association of PFAS exposures with GDM (Valvi et al. 2017). Further, a Norwegian study of PFASs and serum lipid levels in second-trimester samples from 891 pregnant women reported that PFOS was positively associated with total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL), and that PFOA, PFHxS, and three other PFASs were also positively associated with HDL (Starling et al. 2014). Finally, a Danish study that examined PFOS, PFOA, and total cholesterol in serum samples collected from 854 women during the 30th week of gestation reported positive associations for both PFASs (Skuladottir et al. 2015).

Exposure during pregnancy may affect the mother and may also affect her child during gestation and in later life (Bach et al. 2015; Casals-Casas and Desvergne 2011). However, until now, only a few studies with relatively small populations have examined the potential role of PFAS exposures on metabolic outcomes at pregnancy (Starling et al. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.