Academic journal article Genetics

The Synaptonemal Complex Shapes the Crossover Landscape through Cooperative Assembly, Crossover Promotion and Crossover Inhibition during Caenorhabditis Elegans Meiosis

Academic journal article Genetics

The Synaptonemal Complex Shapes the Crossover Landscape through Cooperative Assembly, Crossover Promotion and Crossover Inhibition during Caenorhabditis Elegans Meiosis

Article excerpt

ABSTRACT

The synaptonemal complex (SC) is a highly ordered proteinaceous structure that assembles at the interface between aligned homologous chromosomes during meiotic prophase. The SC has been demonstrated to function both in stabilization of homolog pairing and in promoting the formation of interhomolog crossovers (COs). How the SC provides these functions and whether it also plays a role in inhibiting CO formation has been a matter of debate. Here we provide new insight into assembly and function of the SC by investigating the consequences of reducing (but not eliminating) SYP-1, a major structural component of the SC central region, during meiosis in Caenorhabditis elegans. First, we find an increased incidence of double CO (DCO) meiotic products following partial depletion of SYP-1 by RNAi, indicating a role for SYP-1 in mechanisms that normally limit crossovers to one per homolog pair per meiosis. Second, syp-1 RNAi worms exhibit both a strong preference for COs to occur on the left half of the X chromosome and a significant bias for SYP-1 protein to be associated with the left half of the chromosome, implying that the SC functions locally in promoting COs. Distribution of SYP-1 on chromosomes in syp-1 RNAi germ cells provides strong corroboration for cooperative assembly of the SC central region and indicates that SYP-1 preferentially associates with X chromosomes when it is present in limiting quantities. Further, the observed biases in the distribution of both COs and SYP-1 protein support models in which synapsis initiates predominantly in the vicinity of pairing centers (PCs). However, discontinuities in SC structure and clear gaps between localized foci of PC-binding protein HIM-8 and X chromosome-associated SYP-1 stretches allow refinement of models for the role of PCs in promoting synapsis. Our data suggest that the CO landscape is shaped by a combination of three attributes of the SC central region: a CO-promoting activity that functions locally at CO sites, a cooperative assembly process that enables CO formation in regions distant from prominent sites of synapsis initiation, and CO-inhibitory role(s) that limit CO number.

REDUCTION in ploidy during sexual reproduction depends on the ability to form pairwise associations between homologous chromosomes. The homolog pairing process typically culminates in an arrangement in which the homologs are aligned in parallel along their lengths, with a highly ordered proteinaceous structure known as the synaptonemal complex (SC) located at the interface between them. Further, in most organisms, pairwise associations between homologs are solidified through the formation of crossovers (COs) between their DNA molecules, a process that is completed within the context of the SC.

The SC has long been recognized as a hallmark cytological feature of meiosis. It was discovered on the basis of its highly ordered structure and location at the interface between aligned chromosomes in electron microscopy images of nuclei at the pachytene stage of meiotic prophase (Moses 1956, 2006). Each of the homologs is associated with one of the two lateral elements (LEs) of the SC, which are composed of cohesin complexes and other meiosis-specific structural and regulatory proteins (reviewed in Mlynarczyk-Evans and Villeneuve 2010). The LEs are connected by a highly ordered latticework of transverse filaments, and often a pronounced central element, that comprise the central region of the SC. The protein components of the SC central region are very poorly conserved at the primary sequence level, but the major central region proteins identified from diverse species share in common extended regions of predicted coiled coil structure.

The SC has been demonstrated to have at least two conserved functions in meiotic prophase. First, the SC serves to stabilize and maintain tight associations along the lengths of aligned homologs (reviewed in Mlynarczyk-Evans and Villeneuve 2010). …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.