Academic journal article Genetics

Bacterial DNA Uptake Sequences Can Accumulate by Molecular Drive Alone

Academic journal article Genetics

Bacterial DNA Uptake Sequences Can Accumulate by Molecular Drive Alone

Article excerpt

ABSTRACT

Uptake signal sequences are DNA motifs that promote DNA uptake by competent bacteria in the family Pasteurellaceae and the genus Neisseria. The genomes of these bacteria contain many copies of their canonical uptake sequence (often >100-fold overrepresentation), so the bias of the uptake machinery causes cells to prefer DNA derived from close relatives over DNA from other sources. However, the molecular and evolutionary forces responsible for the abundance of uptake sequences in these genomes are not well understood, and their presence is not easily explained by any of the current models of the evolution of competence. Here we describe use of a computer simulation model to thoroughly evaluate the simplest explanation for uptake sequences, that they accumulate in genomes by a form of molecular drive generated by biased DNA uptake and evolutionarily neutral (i.e., unselected) recombination. In parallel we used an unbiased search algorithm to characterize genomic uptake sequences and DNA uptake assays to refine the Haemophilus influenzae uptake specificity. These analyses showed that biased uptake and neutral recombination are sufficient to drive uptake sequences to high densities, with the spacings, stabilities, and strong consensuses typical of uptake sequences in real genomes. This result greatly simplifies testing of hypotheses about the benefits of DNA uptake, because it explains how genomes could have passively accumulated sequences matching the bias of their uptake machineries.

MANY bacteria are able to take up DNA fragments from their environment, a genetically specified trait called natural competence (Chen and Dubnau 2004; Johnsborg et al. 2007; Maughan et al. 2008). Many other species have homologs of competence genes, suggesting that although they are not competent under laboratory conditions, they may be competent under natural conditions (Claverys andMartin 2003; Kovacs et al. 2009). Such a widespread trait must be beneficial but the evolutionary function of DNA uptake remains controversial. Cells can use the nucleotides released by degradation of both incoming DNA and any strands displaced by its recombination, thus reducing demands on their nucleotide salvage and biosynthesis pathways (Redfield 1993; Palchevskiy and Finkel 2009). Cells may also benefit if recombination of the incoming DNA provides templates for DNA repair or introduces beneficial mutations, but may suffer if recombination introduces damage or harmful mutations (Redfield 1988; Michod et al. 2008).

Althoughmost bacteria that have been tested show no obvious preferences for specific DNA sources or sequences, bacteria in the family Pasteurellaceae and the genus Neisseria strongly prefer DNA fragments from close relatives. Two factors are responsible: First, the DNA uptake machineries of these bacteria are strongly biased toward certain short DNA sequence motifs. Second, the genomes of these bacteria contain hundreds of occurrences of the preferred sequences. The Pasteurellacean motif is called the uptake signal sequence (USS); its Neisseria counterpart is called the DNA uptake sequence (DUS). All Neisseria genomes contain the same consensus DUS [core GCCGTCTGAA (Treangen et al. 2008)], but divergence in the Pasteurellaceae has produced two subclades, one of species sharing the canonicalHaemophilus influenzae 9-bp USS (Hin-USS core AAGTGCGGT) and the other of species with a variant USS that differs at three core positions (Apl-USS core: ACAAGCGGT) and has a longer flanking consensus (Redfield et al. 2006).Uptake sequence biases are strong but not absolute; for example, replacing the Hin-USS with the Apl-USS reduces H. influenzae DNA uptake only 10-fold (Redfield et al. 2006) and DNA from Escherichia coli is taken up in the absence of competing H. influenzae DNA (Goodgal and Mitchell 1984).

Most studies of the distribution and consensus of uptake sequences in genomes have examined only those occurrences that perfectly match the above core DUS and USS sequences. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.