Academic journal article Genetics

Floral Genetic Architecture: An Examination of QTL Architecture Underlying Floral (Co)Variation across Environments

Academic journal article Genetics

Floral Genetic Architecture: An Examination of QTL Architecture Underlying Floral (Co)Variation across Environments

Article excerpt

ABSTRACT

Genetic correlations are expected to be high among functionally related traits and lower between groups of traits with distinct functions (e.g., reproductive vs. resource-acquisition traits). Here, we explore the quantitative-genetic and QTL architecture of floral organ sizes, vegetative traits, and life history in a set of Brassica rapa recombinant inbred lines within and across field and greenhouse environments. Floral organ lengths were strongly positively correlated within both environments, and analysis of standardized G-matrices indicates that the structure of genetic correlations is ~80% conserved across environments. Consistent with these correlations, we detected a total of 19 and 21 additive-effect floral QTL in the field and the greenhouse, respectively, and individual QTL typically affected multiple organ types. Interestingly, QTL × QTL epistasis also appeared to contribute to observed genetic correlations; i.e., interactions between two QTL had similar effects on filament length and two estimates of petal size. Although floral and nonfloral traits are hypothesized to be genetically decoupled, correlations between floral organ size and both vegetative and life-history traits were highly significant in the greenhouse; G-matrices of floral and vegetative traits as well as floral and life-history traits differed across environments. Correspondingly, many QTL (45% of those mapped in the greenhouse) showed environmental interactions, including approximately even numbers of floral and nonfloral QTL. Most instances of QTL × QTL epistasis for floral traits were environment dependent.

(ProQuest: ... denotes formula omitted.)

EVOLUTIONARY responses to selection are dependent on genetic architecture. The proportion of phenotypic variation with a heritable genetic basis affects the response to selection, as does the structure of genetic correlations among selected traits. For example, an evolutionary response will be constrained if selection favors an increase in the value of two traits that are negatively correlated; i.e., a negative correlation is antagonistic to the joint vector of selection. Alternatively, if the vector of selection is parallel to the genetic correlation, then trait covariation is reinforcing and the population mean may more rapidly approach favored trait values (Etterson and Shaw 2001; Merilá and Bjórklund 2004). One measure of genetic architecture is the G-matrix (Lynch and Walsh 1998), which is composed of genetic variances (diagonal matrix elements) and genetic covariances among traits (off-diagonal matrix elements). G-matrices have been shown to vary across environments (Donohue et al. 2000; Conner et al. 2003; Brock and Weinig 2007), indicating that the molecular-genetic underpinnings of matrix elements (e.g., identity and/or relative effect of additive and epistatic loci, degree of pleiotropy, etc.) and the traits' evolutionary potential vary across environments. Few studies, however, have related matrix and QTL architectures; and, therefore, the molecular-genetic underpinnings of quantitative-genetic estimates remain unclear (but see Gardner and Latta 2007; Kelly 2009).

In angiosperms, covariances between floral whorls (e.g., petal and stamen length) are frequently positive among functionally related traits. These positive correlations can arise from pollinator-mediated (or pollinationmediated) selection for specific allometric relationships among floral traits and ensuing linkage disequilibrium (LD) among causal loci (Berg 1959, 1960; also referred to as phenotypic integration, see Pigliucci 2003; Klingenberg 2008). For example, in outcrossing species, male fitness may be more dependent on the frequency and efficiency of pollinator visitation than female fitness (Bell 1985; but see Hodgins and Barrett 2008). Anther placement relative to the corolla opening can affect the efficiency of pollen dissemination (Conner and Via 1993; Morgan and Conner 2001); in addition, comparative work indicates that petal-stamen length correlations are stronger than stamen-pistil length correlations in outcrossers, whereas species that reproduce via autogamous selfing show the opposite pattern (Ushimaru and Nakata 2002). …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.