Academic journal article Genetics

Detecting Major Genetic Loci Controlling Phenotypic Variability in Experimental Crosses

Academic journal article Genetics

Detecting Major Genetic Loci Controlling Phenotypic Variability in Experimental Crosses

Article excerpt

ABSTRACT

Traditional methods for detecting genes that affect complex diseases in humans or animal models, milk production in livestock, or other traits of interest, have asked whether variation in genotype produces a change in that trait's average value. But focusing on differences in the mean ignores differences in variability about that mean. The robustness, or uniformity, of an individual's character is not only of great practical importance in medical genetics and food production but is also of scientific and evolutionary interest (e.g., blood pressure in animal models of heart disease, litter size in pigs, flowering time in plants). We describe a method for detecting major genes controlling the phenotypic variance, referring to these as vQTL. Our method uses a double generalized linear model with linear predictors based on probabilities of line origin. We evaluate our method on simulated F^sub 2^ and collaborative cross data, and on a real F^sub 2^ intercross, demonstrating its accuracy and robustness to the presence of ordinary mean-controlling QTL. We also illustrate the connection between vQTL and QTL involved in epistasis, explaining how these concepts overlap. Our method can be applied to a wide range of commonly used experimental crosses and may be extended to genetic association more generally.

(ProQuest: ... denotes formulae omitted.)

QUANTITATIVE trait locus (QTL) analysis has traditionally focused on detection of major genes controlling the expected mean of a phenotype. But there is substantial evidence that not only the mean but also the variance, that is, the stochastic variability of the phenotype about its average value, may itself be under genetic control. The identification of such variance-controlling loci, which we call vQTL, can be helpful in a variety of contexts, including selection of livestock for uniformity, evaluating predictability of response to medical treatment, identification of key biomolecular stabilizers, and assessment of population resilience in ecology and evolution.

One way of interpreting an increase in variability is as a decrease in stability. Waddington (1942) described the concept of canalization, whereby natural selection favors the relative constancy of some attributes, for example, well-formed organs and limbs, and thereby leads to the evolution of heritable architectures that buffer the impact of environmental or background genetic variation that would otherwise cause development to go astray. These architectures create virtual "canals" down which developmental programs flow. For a canalized phenotype, which modern usage expands to include nondevelopmental traits, the "zone of canalization" is the range of underlying liability over which potentially disruptive variation may be absorbed without serious consequence to the expressed trait value (Lynch and Walsh 1998). A well-studied example of a stabilizing architecture is that provided by heat-shock protein 90 (Hsp90), which buffers genetic and stochastic variation in the development of plants and flies (Rutherford and Lindquist 1998; Queitsch et al. 2002; Sangster et al. 2008).

But in absorbing variation, such stabilizing architectures also hide it from view, and a sensitizing change in the stabilizer that shifts liability outside the zone of canalization can have a dramatic effect on the phenotype. Such shifts release the combined effects of previously "cryptic" genetic variation: now decanalized, the phenotype is more sensitive to internal (including genetic) and external environment, and as a result varies more greatly between individuals (Dworkin 2005; Hornstein and Shomron 2006). In this vein, decanalization has been proposed to explain why the genetic architectures of some diseases in human populations seem more amenable than others to genetic dissection through genome-wide association (Gibson and Goldstein 2007). Specifically, whereas some disease phenotypes in homogeneous populations may be heavily canalized and thereby harder to dissect, others may have been decanalized by modern living conditions (e. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.