Academic journal article Journal of Technology Studies

Printing Processes Used to Manufacture Photovoltaic Solar Cells

Academic journal article Journal of Technology Studies

Printing Processes Used to Manufacture Photovoltaic Solar Cells

Article excerpt


There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make solar cells, but some companies have used the offset web press type methods to put material onto foil; they also have created solar cells with inkjet printing. The printing of solar cells has helped to reduce manufacturing costs in most cases, and it also has increased the various applications in which solar power both is and can be used. Many more options for photovoltaic solar panels are available, and not simply the traditional ones that are often placed on rooftops. Such a variety of solar panels are partially to the result of the implementation of suitable printing processes during the production of these cells.


With ever-increasing political and economic oil conflicts as well as climate change, a growing need for renewable energy that comes from natural resources, such as sunlight, wind, rain, tides, and geothermal heat, is warranted. Wars have been caused in part to protect oil supplies, and millions of tons of pollutants and greenhouse gases are emitted into the atmosphere every year due to the burning of fossil fuels to create energy. There is no other area of technology than renewable energy technologies that can both "meet the challenges of climate change and secure an energy supply in an intelligent manner" (Wengenmayr & Bührke, 2008, p. 1). A number of options for new technologies of renewable energy exist, that is, from geothermal to wind to hydrogen fuel cells to hydropower; however, one of the most accessible and widely used technologies is solar energy. Solar power does not create any noise when it is working, "is non-polluting, does not generate greenhouse gases, and creates no waste products," (Brenner, 2010, p. 27), which is also why it is an increasingly preferred renewable energy. Additionally, the potential for solar power is immense. The energy from the sunlight that strikes the earth for only forty minutes is equal to the global energy consumption for an entire year (Zweibel, Mason, & Vasilis, 2008). All of that energy is of no use, unless it can be captured. A good method to harness this immense amount of energy and thus to eventually use it as electricity is through the use of photovoltaic (PV) energy systems.

Photovoltaic Power

According to the U.S. Department of Energy (2010, p. 1), "the diversity, adaptability, and modularity of PV technology make it distinct from other renewable resources." Solar photovoltaic power is extremely useful because it can be produced in a number of ways from a variety of materials, and it can be used for numerous applications. Photovoltaic cells can be used for anything (e.g., from a small strip that powers a simple calculator to personal panels on homes to larger commercial settings and solar farms spread out over vast areas of land). Photovoltaic modules are also useful since they have minimal maintenance costs and are extremely long lasting; some manufacturers offer up to 25-year warrantees (Brenner, 2010). In 2008, photovoltaic systems were the largest producer of electricity directly from solar energy in the world, in terms of kWh produced per year (Vanek & Albright, 2008).

The photovoltaic or PV cell is a type of technology that uses semiconducting materials to convert the energy in sunlight into usable electricity. Derived from Greek, the term photovoltaic can be translated as "electrical energy from light" (Wengenmayr & Bührke, 2008, p. 42). The cells transfer the energy of the photons penetrating the solar panels to electrons that are "channeled into an external circuit for powering an electrical load" (Vanek & Albright, 2008, p. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.