Academic journal article Attention, Perception and Psychophysics

Pupil-BLAH-Metry: Cognitive Effort in Speech Planning Reflected by Pupil Dilation

Academic journal article Attention, Perception and Psychophysics

Pupil-BLAH-Metry: Cognitive Effort in Speech Planning Reflected by Pupil Dilation

Article excerpt

Published online: 10 January 2012

© Psychonomic Society, Inc. 2012

Abstract In reading research, a longstanding question is whether any stages of lexical processing require central attention, and whether such potential demands are frequency-sensitive. In the present study, we examined the allocation of cognitive effort in lexical processing by examining pupil dilations and naming latencies in a modified delayed naming procedure. In this dual-task/change procedure, participants read words and waited for various delays before being signaled to issue a response. On most trials (80%), participants issued a standard naming response. On the remaining trials, they were cued to abandon the original speech plan, saying "blah" instead, thereby equating production across different words. Using feature-matched low- and high-frequency words, we observed the differences in pupil dilations as a function of word frequency. Indeed, frequency-sensitive cognitive demands were seen in word processing, even after naming responses were issued. The results suggest that word perception and/or speech planning requires the frequency-sensitive allocation of cognitive resources.

Keywords Word recognition . Cognitive control . Automaticity . Attention

Word frequency effects are classic and robust in psycholinguistic research, predicting performance across many tasks, including lexical decision (Rubenstein, Garfield, & Millikan, 1970; Stone & Van Orden, 1993), naming (Forster & Chambers, 1973; Waters & Seidenberg, 1985), and perceptual identification (Manelis, 1977). Even in silent reading, word frequency has powerful effects on eye movements and fixation durations (Inhoff& Rayner, 1986; Rayner & Duffy, 1986). Despite the ubiquity of frequency effects, questions remain about their locus in word processing: Are frequency effects restricted to early processes of perception and lexical access, or do they continue into postaccess processes? A related question concerns the automaticity of lexical access: Does word perception require central attention, and might cognitive demands differ across high-frequency (HF) and low-frequency (LF) words?

The word frequency effect is most commonly assessed using response times (RTs); across variations in methods, stimuli, and participants, people are faster to process HF words, relative to LF words. Critically, however, frequency interacts with many other variables, such as context (Becker & Killion, 1977), stimulus quality (Yap, Balota, Tse, & Besner, 2008),word repetition (Scarborough, Cortese,&Scarborough, 1977), and neighborhood density (Andrews, 1992; Grainger& Segui, 1990). Frequency effects also change across tasks; for example, they are approximately three times larger in lexical decision, relative to naming. As suggested by Balota and Chumbley (1984), this interaction suggests that the decision stage (a necessary component for lexical decision, but not for naming) is frequency-sensitive. Thus, frequency appears to affect processes beyond perception in lexical decision. Indeed, Balota and Abrams (1995) later reported that frequency influences response mechanics (e.g., arm movement force) in lexical decision. In contrast, the naming task does not entail a decision stage, and is often assumed to provide a "cleaner" estimate of frequency (and other lexical) effects.

The delayed naming task

In a standard naming task, participants try to correctly name stimulus words as quickly as possible following their presentation (e.g., Forster & Chambers, 1973). Given this procedure, however, an RT difference between LF and HF words might reflect lexical access, or it might reflect uncontrolled differences in articulatory complexity (or other factors) across the words. To address this issue, the delayed naming task was developed. In delayed naming, the participant sees a word and then waits, often for variable intervals, for a "go" signal to initiate the naming response. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.