Academic journal article Homeland Security Affairs

Inaccurate Prediction of Nuclear Weapons Effects and Possible Adverse Influences on Nuclear Terrorism Preparedness

Academic journal article Homeland Security Affairs

Inaccurate Prediction of Nuclear Weapons Effects and Possible Adverse Influences on Nuclear Terrorism Preparedness

Article excerpt

The unthinkable is probably inevitable. At some time in the future a terrorist group will detonate a nuclear explosive in a major metropolitan area. Nuclear non-proliferation regimes are not working. The earliest U.S. policies failed to prevent the U.S.S.R., United Kingdom, France, and China from developing nuclear weapons. Later policies failed to deter Israel, South Africa, Pakistan, and India. They have not proven successful with North Korea or Iran and did not work in Iraq (unless you count invasion as an element of our non-proliferation policy). The few apparent successes (South Africa, Libya, etc.) can be attributed to internal factors as much as to the effects of non-proliferation activities. Once nuclear weapons are in the hands of unstable states or states that support terrorism, there is little doubt that one or more will ultimately wind up in the hands of non-state or state-supported terrorist organizations. Terrorist possession of a nuclear weapon will result in its use against a "highest-value" target - most likely a large city with major economic value, cultural and/or religious significance, and a dense population in which high casualties will result.

The likelihood of an attack has prompted considerable public debate about what are the best steps to prevent such an attack. In many of these discussions estimates of the number of casualties or the size of the area that would be damaged by an attack are used to reinforce the importance of action. 1 Ironically, as discussed later, these estimates may evoke inaction in some critical areas. Paraphrasing many examples, they typically state: a Hiroshima-sized weapon detonated in a major metropolitan area will kill a million people or will vaporize everything within a half-mile of ground zero or some other equally dramatic claim (although some scenarios are less cataclysmic). To this author, the estimates do not ring true - they sound excessive. The estimates are often quoted or repeated by individuals who clearly lack technical expertise in nuclear weapons effects and original sources for the estimates are seldom cited. Although it is possible that some are the product of hyperbole used in political oratory to reinforce a point, the frequency is too high for this to always be the case. It is more likely that valid estimates made for a military attack scenario have been improperly extrapolated to the terrorist scenario. However, if the policymakers making such statements actually believe these estimates, then inaccurate information is being used to set policy, and something should be done to rectify the situation. Such "excessive" estimates have been used to establish emergency response planning guidance. 2 It remains to be seen whether this will result in over-preparation or under-preparation. Neither is desirable. The primary purpose of this paper is to discuss the accuracy of common effects estimates and describe how more realistic estimates might affect nuclear terrorism preparedness.

STANDARD EFFECTS ANALYSIS

The standard weapons effects prediction process occurs as follows. The desired type of nuclear explosive, its yield, and its height of burst are selected. The distances at which specific effects levels are expected to be achieved are estimated using relations derived from comparison of theory to measurements obtained during nuclear testing. Using these distances, areas are calculated that are associated with each effects level. The effects levels are then correlated with percentages of casualties. This correlation is somewhat subjective, but in the best cases is based on modeling that has been validated by the results from Hiroshima and Nagasaki. Once a target has been selected, population density data, the calculated effects areas, and the casualty correlations are multiplied to estimate the total numbers of casualties expected.

For purposes of example, we will assume that a Hiroshima-sized fission weapon (nominal 10 kT) is the most probable terrorist weapon. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.