Academic journal article Attention, Perception and Psychophysics

Stroboscopic Visual Training Improves Information Encoding in Short-Term Memory

Academic journal article Attention, Perception and Psychophysics

Stroboscopic Visual Training Improves Information Encoding in Short-Term Memory

Article excerpt

Published online: 19 July 2012

© Psychonomic Society, Inc. 2012

Abstract The visual system has developed to transform an undifferentiated and continuous flow of information into discrete and manageable representations, and this ability rests primarily on the uninterrupted nature of the input. Here we explore the impact of altering how visual information is accumulated over time by assessing how intermittent vision influences memory retention. Previous work has shown that intermittent, or stroboscopic, visual training (i.e., practicing while only experiencing snapshots of vision) can enhance visual-motor control and visual cognition, yet many questions remain unanswered about the mechanisms that are altered. In the present study, we used a partial-report memory paradigm to assess the possible changes in visual memory following training under stroboscopic conditions. In Experiment 1, the memory task was completed before and immediately after a training phase, wherein participants engaged in physical activities (e.g., playing catch) while wearing either specialized stroboscopic eyewear or transparent control eyewear. In Experiment 2, an additional group of participants underwent the same stroboscopic protocol but were delayed 24 h between training and assessment, so as to measure retention. In comparison to the control group, both stroboscopic groups (immediate and delayed retest) revealed enhanced retention of information in short-term memory, leading to better recall at longer stimulus-to-cue delays (640-2,560 ms). These results demonstrate that training under stroboscopic conditions has the capacity to enhance some aspects of visual memory, that these faculties generalize beyond the specific tasks that were trained, and that trained improvements can be maintained for at least a day.

Keywords Plasticity . Visual memory . Sensory memory . Visual short-term memory . Stroboscopic vision . Generalized learning . Attention in learning . Visual perception

(ProQuest: ... denotes formula omitted.)

Exposing an organism to an altered visual environment often results in modifications to the visual system of the organism (e.g., Blake & Hirsch, 1975; Webster, Mizokami, & Webster, 2007). As humans, our typical visual experiences begin with a continuous and uninterrupted flow of incoming information, and our visual system has developed the ability to transform this information into a seamless and continuous perceptual experience of motion and form. What would happen if the stream of input to the visual system were altered to only allow successive glimpses of the world?

Intermittent, or stroboscopic, vision provides an interesting manipulation because it interrupts the normal flow of visual information, and therefore reduces the feedback that is available to guide movements as they are carried out. For example, imagine trying to catch a ball while in a stroboscopic environment. Because you cannot see continuously, you are forced to extrapolate between discrete visual samples to correctly judge the ball's trajectory. If the stroboscopic rate is sufficiently fast, visual feedback is frequent, and catching the ball is not complicated. However, as the rate decreases, more time passes between visual samples, and essential visual information is lost. Under these conditions, trying to catch a thrown ball becomes quite difficult.

When placed in a stroboscopic environment, one must adjust to perform visual tasks adequately, and several possible mechanistic changes could be made. For example, individuals may seek to compensate for their lack of continuous vision by preferentially storing information in visual memory to facilitate perception and/or motor control. This need for compensation suggests that stroboscopic environments may offer an especially powerful research tool for studying visual processing and the interplay between vision and motor actions.

Previous research has used intermittent visual experience to study what aspects of sight are important for regulating perceptual-motor performance, such as during driving (Senders et al. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.