Academic journal article Air & Space Power Journal

Space Acquisition Issues in 2013

Academic journal article Air & Space Power Journal

Space Acquisition Issues in 2013

Article excerpt

Space systems acquisitions for national security have always been very challenging. It literally is rocket science! Our ability to truly leverage the advantages that the space domain offers has always depended on the availability of state-of-the-art technology to apply to our space capabilities. The level of requisite technology has demanded top-dollar investment and zero tolerance for errors. One small flaw in a launch vehicle can result in complete loss of the space vehicle. One small flaw in the space vehicle can result in total loss of mission on orbit. If not done correctly, the launch of a satellite is an irreversible process with dire and prohibitively expensive consequences. From the days of the "Schoolhouse Gang" led by Gen Bernard Schriever to the Space and Missile Systems Center of 2013, space acquisition has always required a team of dedicated, technically competent professionals and a significant dollar investment.

Although there are many constants about space acquisition, there are also some significant changes about the environment of the twenty-first century that compel us to evolve the way we acquire our space systems. The national security environment of 2013 is vastly different than that of 1947 or even that of 2005. First and foremost, our space systems are absolutely critical to our national security operations today. The world relies on space-based capabilities to provide humanitarian help in the aftermath of natural and technological disasters such as the Indian Ocean tsunami, the Kashmir earthquake, and the Japanese nuclear reactor incident to assess damage and evaluate the situation on the ground. Space-based capabilities provide rapid mapping and high-resolution imaging that have become important support tools in emergency relief operations. The capabilities also aid in executing logistics, staff security, distribution, transportation, and setup of telecommunication networks and refugee camps.

We also have a growing dependence on space-based capabilities for our military combat operations. Immediately after the terrorist attacks of 2001, small groups of elite American military units were deployed to Afghanistan to support the anti-Thliban Afghan fighters. Those units carried 2.75-pound precision lightweight Global Positioning System (GPS) receivers as well as satellite-based communication devices they used to pinpoint enemy targets and call in devastating air strikes against them. Because GPS-guided munitions strike with such accuracy, they greatly reduce the number of air sorties needed to destroy a target. This is a far cry from the Vietnam War when Soldiers would look at a map to call in friendly and enemy coordinates and then pop smoke so the aircraft could know where they were! Whether it is humanitarian operations in support of tsunami relief or combat operations in Afghanistan, we cannot accomplish the mission without our space capabilities.

Another change is the fact that the physical environment in which our satellites and space systems must operate is now competitive, congested, and contested. Currently, more than 60 countries or consortia are operating satellites, and citizens of 39 nations have actually flown in space. Of the 190-plus countries around the globe, over 120 now own at least part of a satellite. There are over 1,000 active satellites in orbit today! In addition, the total amount of space debris has increased considerably in the past six years, primarily due to two events. The first was in 2007 when the Chinese tested an antisatellite weapon against one of their weather satellites. That test created more than 3,000 pieces of trackable debris along with thousands of pieces of debris too small to track-objects that will threaten other satellites for decades, if not centuries, to come. The second event was in 2009 when a dead Russian communications satellite hit an Iridium satellite, scattering about another 2,000 pieces of trackable debris around the earth and, again, many more pieces too small to track. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.