Academic journal article Alcohol Research

Alcohol and HIV Effects on the Immune System

Academic journal article Alcohol Research

Alcohol and HIV Effects on the Immune System

Article excerpt

Alcohol use disorder (AUD) and HIV infection both affect the immune system and frequently coexist in the same person, potentially multiplying the risk of infectious disease. Infectious disease, in turn, continues to be a major health concern and leading cause of morbidity and mortality worldwide, despite major advances in our understanding of the immune system, improvements in sanitation practices, and use of antibiotics, vaccines, and antiviral drugs.

Infection with HIV is particularly troublesome for the immune system because it infects and destroys immune system cells called T helper lymphocytes or CD4+ T cells. Untreated, the disease progresses over a few years to AIDS, leading to eventual death for most people. The disease is transmitted from infected to uninfected people through biological fluids containing the virus, most commonly through sexual contact but also through contaminated needles and other means. Since its discovery in the early 1980s, HIV infection has become a pandemic, causing an estimated 36 million deaths. The World Health Organization estimates that in 2012, of the 35 million people living with HIV/ AIDS (PLWHA), 2.3 million were newly infected and 1.6 million died of AIDS-related causes despite increased availability of effective antiretroviral therapy (ART) (Joint United Nations Programme on HIV/AIDS 2013).

AUD in the form of alcohol abuse and alcohol addiction are the most common and costly form of substance abuse in the United States and represent a global health problem. For PLWHA, rates of heavy drinking are even higher than those in the general population (Galvan et al. 2002). One study found that 82% of HIV-infected patients consumed alcohol, and half were classified as hazardous drinkers (Lefevre et al. 1995). Because AUD and HIV infection frequently coexist, studies have tried to understand the influence of alcohol consumption on the transmission and progression of HIV disease. For one, heavy alcohol consumption increases the risk of HIV transmission through its propensity to increase the likelihood of risky sexual behavior, including unprotected sex with multiple partners (Rehm et al. 2012; Shuper et al. 2009; Stall et al. 1986). However, as detailed at length in this issue, AUD also may affect innate immune defenses and adaptive immune responses and thereby potentially increase the likelihood of HIV transmission over and above alcohol's known behavioral associations with infection risk. Once infected, studies find that PLWHA with AUD perform poorly at multiple levels of the HIV treatment cascade, including adherence to ART, resulting in a higher likelihood of virologic nonsuppression (Azar et al. 2010; Chander et al. 2006; Palepu et al. 2003). Large observational studies show that hazardous alcohol consumption decreases overall survival in PLWHA in what seems to be a dose-dependent manner (Braithwaite et al. 2007). In 2010, this journal devoted an issue to the many consequences of alcohol consumption on HIV transmission with an emphasis on prevention, HIV disease pathogenesis, progression and treatment, and the impact of alcohol-HIV comorbidity on the lung, liver, heart, and brain (Bryant et al. 2010).

Here, we focus on the impact of alcohol on the host defense response to HIV infection. In particular, we review the evidence that alcohol exacerbates HIV's influence on the immune system and affects disease progression and transmission. In particular, we discuss alcohol's effect on the mucosal immune system in the tissues of the gastrointestinal tract, the genital tract, and the lungs, all of which play a role in transmission and progression of HIV disease.

Does Alcohol Interact With HIV?

Alcohol's effect on the immune system already is complex, but it is made even more complex in the context of HIV disease. Alcohol either can be immunosuppressive or immune activating for the cells of the innate and adaptive immune systems (Molina et al. 2010; Szabo et al. 2009). …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.