Academic journal article Attention, Perception and Psychophysics

Working Memory Capacity and the Scope and Control of Attention

Academic journal article Attention, Perception and Psychophysics

Working Memory Capacity and the Scope and Control of Attention

Article excerpt

Published online: 25 April 2015

© The Psychonomic Society, Inc. 2015

Abstract Complex span and visual arrays are two common measures of working memory capacity that are respectively treated as measures of attention control and storage capacity. A recent analysis of these tasks concluded that (1) complex span performance has a relatively stronger relationship to fluid intelligence and (2) this is due to the requirement that people engage control processes while performing this task. The present study examines the validity of these conclusions by examining two large data sets that include a more diverse set of visual arrays tasks and several measures of attention control. We conclude that complex span and visual arrays account for similar amounts of variance in fluid intelligence. The disparity relative to the earlier analysis is attributed to the present study involving a more complete measure of the latent ability underlying the performance of visual arrays. Moreover, we find that both types of working memory task have strong relationships to attention control. This indicates that the ability to engage attention in a controlled manner is a critical aspect of working memory capacity, regardless of the type of task that is used to measure this construct.

Keywords Working memorycapacity . Maintenance . Storage . Attention control . Fluid intelligence


Working memory is the cognitive system in which memory and attention interact to produce complex cognition. Working memory capacity is a measure of individual differences in the efficacy with which this system functions. These differences are important, as they predict performance on tests of academic achievement (Cowan et al., 2005; Turner & Engle, 1989), language comprehension (Daneman & Mirikle, 1996), and performance differences often remain despite extensive training and experience in a domain (Hambrick & Meinz, 2011).

Nelson Cowan and colleagues note that individual difference in working memory capacityareoftenascribedtoatleast one of two broadly defined mechanisms: the scope or control of attention (Cowan et al., 2005; Cowan et al., 2006; see also Chuderski & Necka, 2012; Shipstead, Redick, Hicks, & Engle, 2012; Shipstead et al., 2014). The scope of attention refers to individual differences in the maintenance capacity of focal attention (Cowan, 2001). The benefit of a large maintenance capacity is that it allows a person to protect more information from proactive interference, thus reducing the tendency to lose sight of goals and increasing the likelihood that disparate units of information will be combined during novel reasoning. The control of attention refers to processes that ensure appropriate information is selected and stabilized in focal attention. This second mechanism increases the functional capacity of focal attention by ensuring that task-relevant, rather than irrelevant, information enters focal attention (see Awh & Vogel, 2008; McNab & Klingberg, 2008; Vogel, McCullough, & Machizawa, 2005). In the present study the control of attention will be operationally defined through tasks that require the override of prepotent responses, in favor of goal-relevant actions (antisaccade, Stroop and flanker tasks; see Methods). Thus, it is critical to state that we are presently referring to an ability to avoid being drawn into salient distraction.

As an example of how these mechanisms might function together, consider a fluid intelligence problem solving task (e.g., matrix reasoning, sequence completion). The test-taker is presented with several problem components and several possible solutions. In generating problem solving hypotheses, a large focus of attention will allow for broader integration of information, as more components can be considered at any one point in time (Oberauer et al., 2007). At the same time, broadly-considered-hypotheses are not necessarily correct hypotheses. A test-taker may need to alter a solution, consider information that is relevant to a hypothesis, or retrieve an old solution for further consideration. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.