Academic journal article Journal of Health Population and Nutrition

Do Fatty Acids Affect Fetal Programming?

Academic journal article Journal of Health Population and Nutrition

Do Fatty Acids Affect Fetal Programming?

Article excerpt


Fatty acids take part in membrane phospholipids, and play important roles in prenatal growth and development. Fatty acids demonstrate their roles in cognitive and behavioral development, and energy metabolism [1, 2]. Maternal nutritional state affects fetal fatty acid supply to the fetus. Fatty acids pass through the placenta during pregnancy, and they are present in breast milk to fulfill their roles in postnatal development [3, 4].

Changes in the metabolic environment, due to insufficient or excessive maternal nutrient intake, can cause short and long-term implications for cell structure and function [2]. Therefore, imbalances in fatty acid intake during fetal development cause structural and functional changes in metabolism [5].

In the fetal period, during organ development, changes in the metabolic environment can lead to the development of chronic diseases in later life [6]. During pregnancy, conditions like maternal obesity, overeating, or malnutrition increase the risk of a metabolic disorder in the fetus [7, 8]. Similarly, overeating during the postnatal stage also increases the newborn's risk of adulthood obesity [7, 9]. Epidemiological and experimental studies have shown that food substrates supplied to the fetus during pregnancy and to the newborn immediately after birth, can have long term health effects on the development of metabolic diseases, including cardiovascular diseases, type 2 diabetes, hypertension, and obesity [10-15].

One of the mechanisms associated with increasing the risk of obesity is described as metabolic programming, due to the consumption of excessive food during the fetal period and after birth. Studies have shown that excessive food intake by the mother during pregnancy can lead to changes in the fetus's appetite balance by causing permanent changes in the central nervous system, and this causes hyperphagia after birth [16-19].

Appetite control mechanisms in the hypothalamus have an important effect on the development of chronic diseases. The hypothalamus begins developing in an early stage of pregnancy, and it continues to develop in postnatal life. During growth and development processes, development associated with the hypothalamus is important, and changes in hormonal balance and nutrition status cause changes in the development and function of the hypothalamus [6].

Fatty acids consumed for nutrition have vital functions on energy metabolism and energy storage; they take part in cell enlargement, promotion of cell functions, coordination of intra- and extracellular communications, and regulation of genes that supply energy substrates and control cellular responses to the metabolic environment [20-22]. Therefore, this review will discuss the primary and regulatory roles of fatty acids, and it will explore the involvement of fatty acids in metabolic programming.


Search strategy and selection of studies

To identify eligible studies for this rewiev, a computerized search was performed for all publications available up to March 2013 through PubMed, Web of Science, and EMBASE databases using the following key words: 'dietary fatty acids', 'dietary lipids', 'omega-3 fatty acids', 'maternal high fat diet', 'maternal fat intake', 'maternal obesity', 'fetal programming', metabolic programming', 'fetal origins of obesity', 'early life nutrition', 'maternal nutrition', 'hypothalamic programming', 'developmental programming', 'placental lipid transfer', 'maternal fatty acid transfer' and 'prenatal fatty acid status.' Reference lists from identified articles and relevant reviews were examined for studies not indexed in the mentioned electronic databases. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The search was limited to English literature.


Fatty acids and growth and development

Long-chain, polyunsaturated fatty acids (LC-PUFA) are important compounds in cell membranes of the central nervous system. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.