Magazine article Liberal Education

Facilitating Innovation in Science Education through Assessment Reform

Magazine article Liberal Education

Facilitating Innovation in Science Education through Assessment Reform

Article excerpt

FOR OVER TWO DECADES, two pervasive themes have informed the discourse on undergraduate science education in the United States. The first emphasizes the role of the nation's science and technology enterprise in meeting critical economic and societal challenges in the twenty-first century. Science is better positioned than ever before to address important societal issues such as food security, environmental health, and sustainable energy (National Research Council 2009). However, realizing this potential to address pressing societal problems requires attracting and retaining new generations of creative and versatile scientists who are well prepared to participate in fast-paced, information-rich, collaborative forms of science that are increasingly pursued on the cusps between disciplines. The foundation of the "sci-tech" enterprise is its welltrained workforce, which is sustained by tapping the broad and diverse talent pool of students who are interested in science (National Research Council 2011). Addressing twenty-first-century challenges also requires a citizenry that is equipped to understand the science that informs controversial issues - such as climate change and alternative energy development - that directly affect their lives and communities.

The role of science education in this regard is clear, yet seemingly contradicted by the second pervasive theme: undergraduate science education in the United States is not as effective as it needs to be in translating student interest in science into optimal preparation either to enter the science workforce or to participate as literate citizens in an increasingly global society. Given the potential for science to address important problems, undergraduate programs ought to be functioning as busy portals for engaging students' innate fascination and developing their understanding of the nature and practice of science. Instead, recent studies suggest, the opposite is true: over half of the students who enter college with an interest in science do not persist in their training beyond the first year or two of introductory coursework (National Research Council 2011). Further, while underrepresented minority (URM) students aspire to major in science at rates similar those of white and Asian students, their completion rates are even lower than their non-URM counterparts. Students who transfer out of science programs report reasons ranging from lack of preparation to perceptions that science courses are unengaging, impersonal, or irrelevant to their interests (Aronson 2002; Felder, Felder, and Dietz 1998; Sevo 2009). Whatever the reason, the implications are clear: negative experiences in undergraduate science courses may have the effect of either eroding student motivation or turning students away from science altogether.

In recent years, multiple efforts within the academic, federal, and private sectors have focused attention on the state of undergraduate science education with respect to success in developing science literacy and preparing students to pursue advanced careers in science fields. The need to engage the "minds and talents" of all Americans in order to improve science literacy and to support scientific research and innovation in the twenty-first century is well documented (AAAS 201 1 ). Most recently, the President's Council of Advisors on Science and Technology (PCAST) concluded that, in order to meet US science workforce needs, one million additional STEM-capable graduates will be needed in the next decade (PCAST 2012).

The question remains how to improve science education in order to increase student persistence and success. An emerging convergence of purpose and strategy among concerned scientists and educators is evident in several published reports. A decade ago, the landmark Bio20W report called for more active learning approaches, greater emphasis on quantitative skills, and improved connections among biology, chemistry, and physics (National Research Council 2003). …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.