Magazine article The Times Higher Education Supplement : THE

Better Than Blue Skies

Magazine article The Times Higher Education Supplement : THE

Better Than Blue Skies

Article excerpt

New models of scientific discovery eschew doing basic research first - and with success, says Ben Shneiderman

If necessity is the mother of invention, could invention also be the mother of discovery? Historically, engineering inventions such as James Watt's steam engine have triggered scientific discoveries, such as the laws of thermodynamics. More recently, Sir Tim Berners-Lee's invention of the World Wide Web opened the way for fundamental advances in network and social systems theory.

These examples, among many others, suggest that young researchers would do well to set their minds to solving real-world problems while, at the same time, generalising their insights to make foundational scientific discoveries.

This formula is, of course, a departure from the 70-year-old linear model of research, in which basic research comes first, followed by applied research and then product development. Hypnotised by this model, many basic researchers work happily on esoteric problems of their own creation, hoping that some useful applications will eventually be found. They enjoy freedom to explore, but sometimes the constraints of working with domain experts on applied research are stronger catalysts for invention and discovery. At Google, practical problems drive its research projects, but these lead to foundational insights (and published papers), as well as widely used improvements in software.

This model - which I call Applied and Basic Combined, or the ABC principle - means that practitioners and theoreticians have to learn each other's language, as well as their working methods and metrics for success. The intense conversations that clarify terminology, research practices and project goals may be the secret of success, allowing the progressive refinement of theories by way of real-world interventions.

Relatedly, there is also a momentum towards blending the methodologies of science, engineering and design (what I call the SED principle). In the past, the scientific method was the expected way to do research, but the prototyping by which engineering progresses has been widely adopted in many major research projects, such as the pursuit of subatomic particles or the exploration of huge social network databases. Scaling up from small prototypes and scaling out to accommodate diverse contexts helps to refine both practice and theory. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.