Newspaper article The Christian Science Monitor

Behind the Biotech Push: World Hunger

Newspaper article The Christian Science Monitor

Behind the Biotech Push: World Hunger

Article excerpt

On the face of it, farming's biotech revolution is wavering.

As hearings on reapproval of genetically engineered crops begin this week in the United States, protesters have stepped up their attacks. Farmers have slowed the rate at which they're adopting the new crops. And industry missteps, such as the widening scandal over nonapproved modified corn showing up in taco shells and other food, has done nothing to reassure consumers.

But quietly, another biotech push is gathering momentum that may prove unstoppable. Universities and nonprofit research organizations are pressing ahead to genetically engineer hardier crops and more nutritious food for the world's poor. And while the US and Europe bicker over how to regulate these new crops, several developing countries are forging ahead with research that could lead to dramatic transformation of agriculture in poor countries.

"There's no way you are going to stop that technology, anymore than you could stop the automobile or the computer," says Al Clausi, an agricultural consultant. "It's just too good."

Here at Iowa State University, the technology is proving so useful that 265 of the university's 1,800 faculty are now working on it. Since 1984, the university has poured $70 million into biotech, including a plant transformation facility to do the genetic grunt work for researchers - the first public facility of its kind in the US.

At the moment, the facility handles 10 to 12 projects a year - half from inside the university, half from institutions as far away as Britain. And demand is growing, says director Kan Wang. "Other universities are starting transformation facilities, and I still see the increase."

Researchers say the technology offers more precision and speed than traditional plant breeding. Adding a specific trait to corn might take 10 to 15 years with conventional techniques, says Tim Reeves, director of the International Maize and Wheat Improvement Center in Mexico. Genetic engineering could bring that down to five years.

By itself, the technology won't feed all the world's hungry. In Southern Africa, for example, Mr. Reeves calculates corn yields would have to double to provide enough food. Genetic engineering might provide 10 percent of that boost, but traditional breeding, fertilizer, and other efforts will be needed, too.

Since biotech only provides a piece of the puzzle - and a controversial piece at that - some researchers argue public money to battle hunger would be better spent elsewhere.

"We don't have to use genetically modified methods," says Hans Herren, director of the International Centre of Insect Physiology and Ecology in Nairobi, Kenya. While seed companies have genetically engineered corn to resist a corn borer common to the US and Europe, Mr. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.