Newspaper article The Christian Science Monitor

US, European Satellites Begin Exploring Earth DIRECTIONS IN SCIENCE

Newspaper article The Christian Science Monitor

US, European Satellites Begin Exploring Earth DIRECTIONS IN SCIENCE

Article excerpt

TWO satellites circling our planet are opening a new adventure in self-knowledge for humanity.

They are beginning the global-scale study of Earth as a complete environmental system. It's an exploration that will continue into the next century.

The European Space Agency's Earth Resources Satellite (ERS-1), launched in July, and the United States Upper Atmosphere Research Satellite (UARS), launched in September, also act as heralds of International Space Year (ISY) in 1992. As part of the 500th-anniversary commemoration of Columbus's transatlantic exploration, ISY's main theme is space-based exploration of the entire planet.

Columbus's achievements enlarged Europeans' world view. The new space-based exploration has the more ambitious goal of helping all humanity to gain a global perspective. As Hubert Curien, founder president of the European Association for the International Space Year, explained in the association's newsletter: "What is needed is careful consideration as to how the Earth might be managed more intelligently."

It will take several decades of worldwide research on land and sea, as well as from space, to assemble the scientific knowledge on which to base planetary management. That is the task of the international global-change research program, which the US National Academy of Sciences calls "the most ambitious scientific enterprise ever undertaken."

The ERS-1 and UARS satellites are forerunners of the satellite systems that will carry out this research. They illustrate the sophistication with which those satellites will operate.

For example, John Frederick, professor of atmospheric sciences at the University of Chicago in Illinois, notes that "the difference between current satellites, which were designed in the 1970s, and the UARS is like the difference between a brand-new Rolls-Royce and a beat-up old Volkswagen." Nine instruments on the 6,500-kilogram (7,200-ton) spacecraft are used to detect 16 different chemical compounds between altitudes of 10 to 80 kilometers (6.2 to 49.6 miles). They can measure air temperatures, wind speeds, solar radiation, and incoming cosmic-ray particles.

UARS data should give scientists a three-dimensional moving picture of the complex, physical and chemical processes of the upper atmosphere. Dr. Frederick compares these to "a big chemical soup with dozens of ingredients.A change anywhere will be felt everywhere else."

Among the most important changes the UARS team wants to monitor are those affecting the ozone layer, which absorbs ultraviolet radiation. Moving along its 584-kilometer-high orbit that is inclined 57 degrees to the equator, UARS can "see" most of that layer. Its 20-month nominal mission extends over one annual Antarctic ozone-hole cycle and two of the Arctic's milder wintertime ozone-depletion cycles.

ERS-1 has taken equally advanced capabilities into its 800-kilometer (496-mile) near-polar orbit. Its imaging radar can map surface details as small as 25 meters across day and night through clear or cloudy skies. Other instruments can measure ocean winds by detecting water-surface roughness, sense infrared (heat) radiation, and measure surface heights to a few centimeters' accuracy.

That kind of observational sophistication "marks the beginning of a new era for the European Earth-observing and environmental activities," says Jean-Marie Luton, director-general of the European Space Agency. …

Author Advanced search


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.