Newspaper article The Christian Science Monitor

Mountain Wind Flows Make Waves with Scientists

Newspaper article The Christian Science Monitor

Mountain Wind Flows Make Waves with Scientists

Article excerpt

Like water waves breaking on a beach, atmospheric waves breaking high above mountains can pack a powerful punch.

On Dec. 9, 1992, their turbulence was so rough at 31,000 feet it tore an engine pod and part of a wing off a DC-8 cargo plane, which happily landed safely. Now analysis of data from a lidar (laser "radar") that was probing the atmosphere near the accident site near Boulder, Colo., gives new insight into this dangerous phenomenon.

Mountain-wave turbulence is a kind of internal friction. It is part of the system by which energy flows through the atmosphere and keeps the weather machine running. Understanding that process is basic to understanding how the atmosphere works. The new findings should also help forecasters sharpen their predictions to warn pilots when such dangerous turbulence is developing, according to F. Martin Ralph of the Environmental Technology Laboratory of the National Oceanic and Atmospheric Administration in Boulder. Mountain-wave turbulence may have caused a plane crash in Colorado Springs in 1991. Alerted to this danger, the National Transportation Safety Board has asked scientists to probe the wind flow over the mountains. A separate study, going on currently, includes new measurements with the lidar. It should help modelers improve the accuracy of forecasting programs. Dr. Ralph, his colleague Paul J. Neiman, and David Levinson at the University of Colorado in Boulder laid out the details of their new findings related to the Boulder accident in a recent issue of the journal Geophysical Research Letters. In a telephone interview, Ralph pointed out that this is part of ongoing research that is shedding light on why aircraft observations of mountain-wave behavior don't jibe with computer simulations. Meteorologists have long known about mountain waves and where they fit into the general scheme of atmospheric circulation. They just don't know the details. In a broad sense, you can think of the atmosphere as a kind of engine. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.