Students Build Math Skills by Visualizing Problems A School District in Wisconsin Uses Spatial Reasoning to Improve Success in Math and Science

Article excerpt

With a painterly eye, eight-year-old Jenny Engelke scrutinizes the pair of plastic blocks stacked on her desk and tries to sketch how a box capable of holding the blocks might look if she could unfold it and lay it flat.

Using graph paper to match the size of the cubes, she first draws a pattern with two squares in the base attached to a row of four squares. She cuts it out and tries to fold it around the blocks, but it won't go all the way around.

"Maybe you should modify your design a little bit," urges her teacher, Carmen Curtis. Jenny returns to her pencil and scissors, adding first one, then two squares to the pattern. Delighted, she runs to show Ms. Curtis that the cubes fit. While many of her third-grade peers around the country are spending their math classes toiling over columns of addition and subtraction problems, Jenny and her classmates at Country View School in Verona, Wis., are part of a three-year experiment to make math something children can see and feel, what Curtis calls "math with understanding." Building on children's natural tendency to explore things visually, elementary school teachers in this district south of Madison are working with researchers at the University of Wisconsin-Madison to develop students' spatial skills at the same time they're learning about numbers. Students encounter problems in measurement, area, volume, and way-finding - the fundamentals of geometry - then come up with ways of defining the problems and explaining the solutions. This differs from classes that use "manipulatives" - hands-on tools designed to aid children's understanding of math - which tend to focus exclusively on numbers, on counting. Researchers have known for years of the link between spatial reasoning and success in math. Most recently, researchers at Boston College found that better spatial skills among boys had more to do with why they outscored girls on the math portion of the SAT college-entrance exam than did girls' lower self-confidence in math. "The best indicator of doing well in math isn't ability to compute; it's ability to visualize," Curtis says. Why spatial reasoning? By encouraging children to come up with their own ways of solving complex visual problems, students learn the value of making conjectures and then finding ways to support them through math, says Richard Lehrer, who developed the curriculum at the UW-Madison's Department of Educational Psychology. Besides mirroring the way mathematicians and scientists think, such an approach forces students to incorporate many important concepts in math, such as geometry, probability, and proof, which are often not taught until high school, he says. Opposition to this "layer cake" approach to teaching math is what's driving many states to adopt academic standards aimed at introducing complex reasoning skills at an earlier age. Mr. Lehrer's work in the primary grades has led to a collaboration with fellow-researcher Leona Schauble and about 40 teachers here to also change the way science is taught. They are finding that students with a firm grounding in spatial skills were better able to create and revise models, the principal way that scientists explain the world. In a unit last year, where kids created models of the elbow using rubber bands and dowel rods, students not in the program tended to view a good model as one that looked like an elbow, whether it acted like one or not. …


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.