Newspaper article The Christian Science Monitor

Mars Rover Curiosity Soil Analysis: Why No News Still Isn't Bad News

Newspaper article The Christian Science Monitor

Mars Rover Curiosity Soil Analysis: Why No News Still Isn't Bad News

Article excerpt

NASA's Mars rover Curiosity has finished its first full-scale analysis of the surface soil in Gale Crater, and while researchers have yet to find definitive evidence pointing to organic compounds that would signal ancient habitats, they did find something else they were looking for: soils that look pretty much like soils other rovers and landers have analyzed elsewhere on the planet.

At first blush, spending $2.5 billion and traveling more than 350 million miles to find more of the same may seem like a bit of overkill. But training the full suite of Curiosity's instruments on something fairly well known during what is still the rover's shakedown period represents an important opening move in the rover's mission, researchers say.

During its two-year prime mission, the one-ton, Mini Cooper- sized lab on wheels aims to see if its new home Gale Crater with its towering central peak, Mt. Sharp once may have been hospitable to simple forms of life. Finding and analyzing any organic compounds in the mountain's ancient layers represents the ultimate prize in that quest.

The soil analysis establishes a relatively modern reference against which the chemical and mineral makeup of Mt. Sharp's far- more ancient land forms can be compared.

The soil results have yielded "an unprecedented look at the chemical diversity in the area that is representative of the rest of the planet," said Michael Meyer, the mission's program scientist, in a briefing at the annual fall meeting of the American Geophysical Union, currently underway in San Francisco.

The results "form a solid baseline for our continued exploration," he says.

During its six-week stay at a site named Rocknest, the rover sampled soils from a mini dune about 5 inches high dubbed Windrift. The rover scooped five samples in all. The initial samples were used to clean the interior of the sample-delivery system of any contaminants that hitched a ride from Earth. The fifth sample served as the fodder for the rover's internal chemistry labs.

Below the dune's surface the sands were fine-grained compared with the surface layer somewhere between grains of sugar and flour in size. The large, salt-sized grains on the dune's surface, which included tiny glass nodules, were coated in the red dust characteristic of Mars, explains Ken Eddget, the lead scientist for a camera on the rovers robotic arm that fills the role of a geologist's magnifying glass. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed


An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.