Newspaper article The Billings Gazette (Billings, MT)

Misinformation and Biases Infect Social Media, Both Intentionally and Accidentally

Newspaper article The Billings Gazette (Billings, MT)

Misinformation and Biases Infect Social Media, Both Intentionally and Accidentally

Article excerpt

People who share potential misinformation on Twitter (in purple) rarely get to see corrections or fact-checking (in orange). Shao et al., CC BY-ND Giovanni Luca Ciampaglia, Indiana University and Filippo Menczer, Indiana University

Social media are among the primary sources of news in the U.S. and across the world. Yet users are exposed to content of questionable accuracy, including conspiracy theories, clickbait, hyperpartisan content, pseudo science and even fabricated “fake news” reports.

It’s not surprising that there’s so much disinformation published: Spam and online fraud are lucrative for criminals, and government and political propaganda yield both partisan and financial benefits. But the fact that low-credibility content spreads so quickly and easily suggests that people and the algorithms behind social media platforms are vulnerable to manipulation.

Our research has identified three types of bias that make the social media ecosystem vulnerable to both intentional and accidental misinformation. That is why our Observatory on Social Media at Indiana University is building tools to help people become aware of these biases and protect themselves from outside influences designed to exploit them.

Bias in the brain

Cognitive biases originate in the way the brain processes the information that every person encounters every day. The brain can deal with only a finite amount of information, and too many incoming stimuli can cause information overload. That in itself has serious implications for the quality of information on social media. We have found that steep competition for users’ limited attention means that some ideas go viral despite their low quality – even when people prefer to share high-quality content.

To avoid getting overwhelmed, the brain uses a number of tricks. These methods are usually effective, but may also become biases when applied in the wrong contexts.

One cognitive shortcut happens when a person is deciding whether to share a story that appears on their social media feed. People are very affected by the emotional connotations of a headline, even though that’s not a good indicator of an article’s accuracy. Much more important is who wrote the piece.

To counter this bias, and help people pay more attention to the source of a claim before sharing it, we developed Fakey, a mobile news literacy game (free on Android and iOS) simulating a typical social media news feed, with a mix of news articles from mainstream and low-credibility sources. Players get more points for sharing news from reliable sources and flagging suspicious content for fact-checking. In the process, they learn to recognize signals of source credibility, such as hyperpartisan claims and emotionally charged headlines.

Screenshots of the Fakey game. Mihai Avram and Filippo Menczer

Bias in society

Another source of bias comes from society. When people connect directly with their peers, the social biases that guide their selection of friends come to influence the information they see.

In fact, in our research we have found that it is possible to determine the political leanings of a Twitter user by simply looking at the partisan preferences of their friends. Our analysis of the structure of these partisan communication networks found social networks are particularly efficient at disseminating information – accurate or not – when they are closely tied together and disconnected from other parts of society.

The tendency to evaluate information more favorably if it comes from within their own social circles creates “echo chambers” that are ripe for manipulation, either consciously or unintentionally. This helps explain why so many online conversations devolve into “us versus them” confrontations.

To study how the structure of online social networks makes users vulnerable to disinformation, we built Hoaxy, a system that tracks and visualizes the spread of content from low-credibility sources, and how it competes with fact-checking content. …

Search by... Author
Show... All Results Primary Sources Peer-reviewed

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.