atomic clock

The Columbia Encyclopedia, 6th ed.

atomic clock

atomic clock, electric or electronic timekeeping device that is controlled by atomic or molecular oscillations. A timekeeping device must contain or be connected to some apparatus that oscillates at a uniform rate to control the rate of movement of its hands or the rate of change of its digits. Mechanical clocks and watches use oscillating balance wheels, pendulums, and tuning forks. Much greater accuracy can be attained by using the oscillations of atoms or molecules. Because the frequency of such oscillations is so high, it is not possible to use them as a direct means of controlling a clock. Instead, the clock is controlled by a highly stable crystal oscillator whose output is automatically multiplied and compared with the frequency of the atomic system. Errors in the oscillator frequency are then automatically corrected. Time is usually displayed by an atomic clock with digital or other sophisticated readout devices.

The first atomic clock, invented in 1948, utilized the vibrations of ammonia molecules. The error between a pair of such clocks, i.e., the difference in indicated time if both were started at the same instant and later compared, was typically about one second in three thousand years. In 1955 the first cesium-beam clock (a device that uses as a reference the exact frequency of the microwave spectral line emitted by cesium atoms) was placed in operation at the National Physical Laboratory at Teddington, England. It is estimated that such a clock would gain or lose less than a second in three million years. The U.S. standard consists of two clocks, NIST-F1 and NIST-F2, which went into service in 1999 and 2014 respectively. They are accurate to 1 second in 100 million years (NIST-F1) and in 300 million years (NIST-F2). Fountain atomic clocks, they consist of a 3-foot vertical tube inside a taller structure, and use lasers to cool cesium atoms, forming a ball of atoms that lasers then toss into the air, much like one would toss a tennis ball, creating a fountain effect. This allows the atoms to be observed for much longer than could be done with any previous clock. NIST-F2's greater accuracy is achieved by operating at -193°C (-315.4°F) instead of at 27°C (80.6°F).

Many of the world's nations maintain atomic clocks at standards laboratories, the time kept by these clocks being averaged to produce a standard called international atomic time (TAI). Highly accurate time signals from these standards laboratories are broadcast around the globe by shortwave-radio broadcast stations or by artificial satellites, the signals being used for such things as tracking space vehicles, electronic navigation systems, and studying the motions of the earth's crust. The accuracy of these clocks made possible an experiment confirming an important prediction of Einstein's theory of relativity. Prototypes of atomic clocks using atoms such as hydrogen or beryllium could be still thousands of times more accurate. For example, researchers at the U.S. National Institute of Standards and Technology have demonstrated an atomic clock based on an energy transition in a single trapped mercury ion (a mercury atom that is missing one electron) that has the potential to be up to 1,000 times more accurate than current atomic clocks.

See F. G. Major, The Quantum Beat: The Physical Principles of Atomic Clocks (1999).

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

atomic clock
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

    Already a member? Log in now.