brake (in technology)

The Columbia Encyclopedia, 6th ed.

brake (in technology)

brake, in technology, device to slow or stop the motion of a mechanism or vehicle.

Types

Friction Brakes

Friction brakes, the most common kind, operate on the principle that friction can be used to convert the mechanical energy of a moving object into heat energy, which is absorbed by the brake. The essential components of a friction brake are a rotating part, such as a wheel, axle, disk, or brake drum, and a stationary part that is pressed against the rotating part to slow or stop it. The stationary part usually has a lining, called a brake lining, that can generate a great amount of friction yet give long wear; it formerly contained asbestos, but this is being replaced by less efficient materials for environmental reasons.

The principal types of friction brake are the block brake, the band brake, the internal-shoe brake, and the disk brake. The block brake consists of a block, the stationary part, that is shaped to fit the contour of a wheel or drum. For example, a wooden block applied to the rim of a wheel has long been used to slow or stop horse-drawn vehicles. A simple band brake consists of a metal band, the stationary part, that can be tightened around a drum by means of a lever. It is found on hoists and excavating machinery. The internal-shoe brake has a drum that contains two stationary semicircular pieces, or shoes, which slow or stop the motion of the drum by pressing against its inner surface. This is the type of brake most often found on automobiles, with an internal-shoe brake drum located on the central part of each wheel. A disk brake of the type used on automobiles has a metal disk and pistons with friction pads that can close on the disk and slow it.

Electric Brakes

A machine that is driven by an electric motor can sometimes use its motor as a brake. Because inertia keeps the machine's shafts moving after the current to the electric motor has been shut off, the machine keeps the motor's armature turning. While this is happening, if the motor's action can be changed to that of a generator, the electric current produced will be drawing its energy from the machine, thus slowing it. However, since such a braking method is not suitable for bringing the machine to a quick stop, it is usually supplemented by friction brakes.

Braking Systems

A manually operated brake pedal or handle is used to activate a brake. With low-power machinery or vehicles the operator can usually apply sufficient force through a simple mechanical linkage from the pedal or handle to the stationary part of the brake. In many cases, however, this force must be multiplied by using an elaborate braking system. In many modern braking systems there no longer is a direct connection between the pedal and the brake; a sensor is used register the force applied to the pedal, and that information is used to determine the pressure to apply to the brake. Automobile braking systems may also include an override that disables the accelerator when the brake is activated. An antilock braking system (ABS) uses sensors to identify when a wheel is locking and then applies and releases the brake automatically several times per second to prevent lockup. ABS can prevent skids, permitting controlled stops, and decreases the amount of time and distance needed to stop a car.

The Air Brake System

An early system for multiplying the braking force, called the air brake system, or air brake, was invented by American manufacturer George Westinghouse and was first used on passenger trains in 1868. It is now widely used on railroad trains. The fundamental principle involved is the use of compressed air acting through a piston in a cylinder to set block brakes on the wheels. The action is simultaneous on the wheels of all the cars in the train. The compressed air is carried through a strong hose from car to car with couplings between cars; its release to all the separate block brake units, at the same time, is controlled by the engineer. An automatic feature provides for the setting of all the block brakes in the event of damage to the brake hose, leakage, or damage to individual brake units. The air brake is used also on subway trains, trolley cars, buses, and trucks.

The Hydraulic Brake System

The hydraulic brake system, or hydraulic brake, is used on almost all automobiles (see hydraulic machine). When the brake pedal of an automobile is depressed, a force is applied to a piston in a master cylinder. The piston forces hydraulic fluid through metal tubing into a cylinder in each wheel where the fluid's pressure moves two pistons that press the brake shoes against the drum.

The Vacuum Brake System

The vacuum brake system, or vacuum brake, depends upon the use of a vacuum to force a piston in a cylinder to hold a brake shoe off a drum; when the vacuum is destroyed, the shoe is released and presses on the drum. In an automotive power brake system, extra pressure can be exerted on the hydraulic master cylinder piston by a vacuum brake's piston.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

brake (in technology)
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.