The Columbia Encyclopedia, 6th ed.


observatory, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. Although geological and meteorological observatories exist, the term is generally applied to astronomical observatories.

The Astronomical Observatory

The function of the astronomical observatory is centered around the telescope. In addition to visual and photographic observations of astronomical bodies and phenomena, perhaps the most valuable use of the telescope is in connection with the spectroscopic study of starlight. The total light from a star is separated into its various wavelengths (see spectrum), and the intensity of each is measured. The temperature and chemical composition of stars can be obtained by this method, as well as information about stellar motion and magnetic fields. Using computers, astronomers can measure the spectra digitally recorded by spectrographs and photometers. Observatories specializing in solar astronomy usually have coronographs and spectroheliographs. Atmospheric limitations on telescopic observations include weather conditions, air turbulence, air glow, pollution, and any source of extraneous illumination. To minimize such conditions optical observatories are generally located at high altitudes in sparsely populated areas.

See articles on specific observatories.

Development of the Astronomical Observatory

Early civilizations, such as those of Babylon, China, and Egypt, recognized the regular and periodic nature of heavenly motions and established primitive observatories to maintain astronomical records. The main purposes of these early observatories were to regulate the calendar and predict the changes of season. Because it was believed that unusual occurrences, such as comets and eclipses, foretold future events on earth, the early observatories also served a religious function, and most of the ancient astronomers were priests. Later observatories were established to compile accurate star charts and an annual ephemeris that would be of use to navigators in determining longitude at sea. For some 600 years, beginning in the 13th cent., Roman Catholic churches included solar observatories to measure the movements of the sun and so determine the correct date for Easter.

The instruments in use before the invention of the telescope include the sextant, quadrant, astrolabe, and armillary sphere. These are all calibrated sighting devices for determining the angular positions of stars and planets. The armillary sphere was the most sophisticated of these instruments. It was composed of a number of rings corresponding to great circles on the celestial sphere and was used to determine both the right ascension and the declination of a star. The last great observatory of the pretelescopic era was built by Tycho Brahe at Uranienborg, on the island of Ven, Denmark.

The invention of the telescope in the early 17th cent. revolutionized observational astronomy in two ways. First, the positions and motions of celestial bodies could be measured much more accurately with telescopes than with the earlier instruments. Such data provided a source of precise time signals. Second, the telescope could be used to analyze the physical nature of celestial bodies themselves. Until the 19th cent., telescopic images were inspected visually by highly trained observers who made drawings of what they saw. The development of dry-plate photography, which permitted long exposure times, however, offered a much more sensitive method of recording images. In the late 20th cent., electronic digital detectors utilizing charge-coupled devices (CCDs) superseded the use of film; a CCD can detect the arrival of a single photon of light. A recent development is the extension of astronomical observations to wavelengths outside the visible spectrum. Most important has been the development of radio astronomy, the study of radio waves emitted by celestial bodies.

Because the atmosphere interferes with astronomical observations from the ground, the ideal location for an observatory is beyond the earth's atmosphere. Since the late 20th cent., there has been an increasing emphasis on space-based observatories (see observatory, orbiting). Several artificial satellites have been equipped with telescopes for infrared, visible, ultraviolet, and X-ray observations. The International Ultraviolet Explorer (IUE) satellite, launched in 1978, is an 18-in. (0.45-meter) space telescope for ultraviolet studies. Launched in 1983, the Infrared Astronomy Satellite (IRAS) discovered some 246,000 infrared sources, as well as several stars around which planetary systems appear to be forming. Skylab was a manned orbiting space observatory (see space exploration). The largest space-based observatory is the Hubble Space Telescope, launched in 1990. Other observatories include the Compton Gamma-Ray Observatory, launched in 1991, and the Chandra X-ray Observatory, launched in 1999. ROSAT [ROentgen SATellite], a joint German-U.S.-British project launched in 1990, studies both X-ray and ultraviolet wavelengths never before imaged from space. It has detected a new class of bright stars that shine only in the ultraviolet part of the spectrum. The Cosmic Background Explorer (1989–93) studied microwave background radiation that no star or other known object could emit—it is believed to have come from the creation of the universe (see cosmology).

The computer age has also impacted observatories in several ways. Instead of being cast in one piece, reflecting telescope mirrors can be constructed of numerous small segments that move under computer control to focus the light and create an image equivalent to that of a much larger telescope. This has made it economically possible for observatories to reach further and further into the cosmos. Computers have also made it easier to construct and retrieve information from archival data bases. Computer networks are under construction that will make it possible for these archival databases to be made available to other observatories so as to create a virtual observatory, with gains in productivity and cost-effectiveness for the observatories that participate in it.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)


1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article



Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Citations are available only to our active members.
    Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

    Already a member? Log in now.