# series

The Columbia Encyclopedia, 6th ed.

# series

series, in mathematics, indicated sum of a sequence of terms. A series may be finite or infinite. A finite series contains a definite number of terms whose sum can be found by various methods. An infinite series is a sum of infinitely many terms, e.g., the infinite series 1/2 + 1/4 + 1/8 + 1/16 + … . The dots mean that the remaining terms are formed according to the rule made evident by the first few terms, in this case doubling the denominator of the preceding term to form that of the next term; the nth term of this series is (1/2)n. Some infinite series converge to a certain value called its limit; i.e., as one adds together progressively more terms, these sums (called the partial sums of the series) form a sequence of values that progressively approach the limit. For example, the series given above converges to the value 1 because the partial sums form the sequence 1/2, 3/4, 7/8, 15/16, … . Many series, however, do not converge, i.e., have no value that their partial sums approach. Such a series is 1/2 + 1/3 + 1/4 + … , for even though the terms become very small, enough of them added together will give a value greater than any number that can be named. A series that does not converge is said to diverge; various tests exist for determining whether or not a given series converges and for determining its limit if it does converge. See also progression.

If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Highlights (0)
Some of your highlights are legacy items.
Citations (0)
Some of your citations are legacy items.
Notes (0)
Bookmarks (0)

Project items include:
• Saved book/article
• Highlights
• Quotes/citations
• Notes
• Bookmarks
Notes

#### Cited article

Style
Citations are available only to our active members.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

series
Settings

#### Settings

Typeface
Text size Reset View mode
Search within

Look up

#### Look up a word

• Dictionary
• Thesaurus
Please submit a word or phrase above.

Why can't I print more than one page at a time?

Help
Full screen

### How to highlight and cite specific passages

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

## Cited passage

Style
Citations are available only to our active members.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

## New feature

It is estimated that 1 in 10 people have dyslexia, and in an effort to make Questia easier to use for those people, we have added a new choice of font to the Reader. That font is called OpenDyslexic, and has been designed to help with some of the symptoms of dyslexia. For more information on this font, please visit OpenDyslexic.org.

To use OpenDyslexic, choose it from the Typeface list in Font settings.

## Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.