Technology for Life: How Biotech Will Save Billions from Starvation

By Prakash, C. S.; Conko, Gregory | The American Enterprise, March 2004 | Go to article overview

Technology for Life: How Biotech Will Save Billions from Starvation


Prakash, C. S., Conko, Gregory, The American Enterprise


"To deny desperate, hungry people the means to control their futures by presuming to know what is best for them is not only paternalistic but morally wrong.... We want to have the opportunity to save the lives of millions of people and change the course of history in many nations.... The harsh reality is that, without the help of agricultural biotechnology, many will not live."

--Hassan Adamu, Nigerian minister of agricultural and rural development, September 11, 2000.

Today, most people around the world have access to a greater variety of nutritious and affordable foods than ever before, thanks mainly to developments in agricultural science and technology. The average human life span--arguably the most important indicator of quality of life--has increased steadily in the past century in almost every country. Even in many less developed countries, life spans have doubled over the past few decades. Despite massive population growth, from 3 billion to more than 6 billion people since 1950, the global malnutrition rate decreased in that period from 38 percent to 18 percent. India and China, two of the world's most populous and rapidly industrializing countries, have quadrupled their grain production.

The record of agricultural progress during the past century speaks for itself. Countries that embraced superior agricultural technologies have brought unprecedented prosperity to their people, made food vastly more affordable and abundant, helped stabilize farm yields, and reduced the destruction of wild lands. The productivity gains from G.M. crops, as well as improved use of synthetic fertilizers and pesticides, allowed the world's farmers to double global food output during the last 50 years, on roughly the same amount of land, at a time when global population rose more than 80 percent. Without these improvements in plant and animal genetics and other scientific developments, known as the Green Revolution, we would today be farming on every square inch of arable land to produce the same amount of food, destroying hundreds of millions of acres of pristine wilderness in the process.

Many less developed countries in Latin America and Asia benefited tremendously from the Green Revolution. But due to a variety of reasons, both natural and human, agricultural technologies were not spread equally across the globe. Many people in sub-Saharan Africa and parts of South Asia continue to suffer from abject rural poverty driven by poor farm productivity. Some 740 million people go to bed daily on an empty stomach, and nearly 40,000 people--half of them children--die every day of starvation or malnutrition. Unless trends change soon, the number of undernourished could well surpass 1 billion by 2020.

The U.N. Food and Agriculture Organization (FAO) expects the world's population to grow to more than 8 billion by 2030. The FAO projects that global food production must increase by 60 percent to accommodate the estimated population growth, close nutrition gaps, and allow for dietary changes over the next three decades. Food charity alone simply cannot eradicate hunger. Increased supply--with the help of tools like bioengineering--is crucial.

Although better farm machinery and development of fertilizers, insecticides, and herbicides have been extremely useful, an improved understanding of genetic principles has been the most important factor in improving food production. Every crop is a product of repeated genetic editing by humans over the past few millennia. Our ancestors chose a few once-wild plants and gradually modified them simply by selecting those with the largest, tastiest, or most robust offspring for propagation. Organisms have been altered over the millennia so greatly that traits present in existing populations of cultivated rice, wheat, corn, soy, potatoes, tomatoes and many others, have very little in common with their ancestors. Wild tomatoes and potatoes contain very potent toxins, for example. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Technology for Life: How Biotech Will Save Billions from Starvation
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.