Basing Instruction on Theory and Research: What Is the Impact of an Extreme Case?

By Tsamir, Pessia | Focus on Learning Problems in Mathematics, Fall 2003 | Go to article overview

Basing Instruction on Theory and Research: What Is the Impact of an Extreme Case?


Tsamir, Pessia, Focus on Learning Problems in Mathematics


Introduction

In the last decade, it has been widely recommended that mathematics teaching consider and address students' correct and incorrect ideas concerning the subject matter (NCTM, 1991; 2000). Teachers are expected, among other things, to design instruction based on data regarding students' relevant conceptions and misconceptions, and to be alert to them in the course of class discussion. It is clear that this requires familiarity with students' common errors, with what makes a problem easy or difficult for them, and with possible ways to address their difficulties. Helpful sources for such teaching may be found in theoretical frameworks that explain students' correct and incorrect ideas, as well as in general teaching approaches.

The Intuitive Rules Theory is one such theoretical framework, and the cognitive conflict approach is one such teaching approach. This paper illustrates the use of the intuitive rules theory for analyzing students' reactions to geometrical tasks regarding polygons, and the use of the cognitive conflict approach for subsequent teaching. The paper consists of three main sections, (a) Study A: using the intuitive rules theory to analyze students' solutions, (b) Study B: basing instruction on research findings, extreme cases and cognitive conflict, and (c) summing up and looking ahead.

Study A: Using the Intuitive Rules Theory to Analyze Students' Solutions

The intuitive rules theory that accounts for many of the incorrect responses students present to scientific and mathematical tasks, was formulated and investigated by Stavy and Tirosh (Stavy & Tirosh, 1994; 1996a; 1996b; 2000; Tirosh & Stavy, 1999). The main claim of the intuitive rules theory is that students tend to react in a similar, predictable manner to various, unrelated scientific, mathematical and daily tasks that share some external features. One intuitive rule, which has been extensively investigated, is more A-more B, and its strong explanatory and predictive power has been widely reported (Stavy & Tirosh, 2002). All tasks that elicit responses in line with the intuitive rule more A-more B are comparison tasks, describing two objects differing with regard to a certain salient quantity, A (A1>A2). Students are asked to compare these two objects with respect to another, given quantity B, where [B.sub.1] is not necessarily larger than [B.sub.2]. It was found that students tended to claim that [B.sub.1] > [B.sub.2] because [A.sub.1] > [A.sub.2].

For example, Fischbein (1993) presented students with two points: Point A--the intersection point of two lines--and Point B--the intersection point of four lines. Students tended to view Point B as larger and heavier than Point A. They explained the more lines that intersect--the larger the intersection point, and that the more lines that intersect--the heavier the intersection point. In another research Klartag and Tsamir (2000) found that high school students tended to claim that for any function f(x), if f([x.sub.1]) is larger than f([x.sub.2]) then f' ([x.sub.1]) is larger than f' ([x.sub.2]). These claims were also evident when the students were presented with specific functions, given in an algebraic representation, where it was easy to refute this claim by substituting a suitable value. In both cases, students tended to claim that [b.sub.1] > [b.sub.2] because [a.sub.1] > [a.sub.2], or more A (number of intersecting lines, value of the function f(x)) more B (size of intersection point, value of the derivative of the function f' (x)).

Stavy and Tirosh (2000) claimed that the rule more A-more B is intuitive in the sense that Fischbein (1987) used the word, i.e., reactions based on it are immediate and confident, and the correctness of the associated solutions seems self-evident. Indeed, studies in mathematics and science education indicate that more A-more B is often intuitively used by students in relation to various topics (Noss, 1987; Stavy & Tirosh, 1996a; 2000; Tsamir, 1997; Zazkis, 1999). …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Basing Instruction on Theory and Research: What Is the Impact of an Extreme Case?
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.