Children's Exposure to Volatile Organic Compounds as Determined by Longitudinal Measurements in Blood

By Sexton, Ken; Adgate, John L. et al. | Environmental Health Perspectives, March 2005 | Go to article overview

Children's Exposure to Volatile Organic Compounds as Determined by Longitudinal Measurements in Blood


Sexton, Ken, Adgate, John L., Church, Timothy R., Ashley, David L., Needham, Larry L., Ramachandran, Gurumurthy, Fredrickson, Ann L., Ryan, Andrew D., Environmental Health Perspectives


Blood concentrations of 11 volatile organic compounds (VOCs) were measured up to four times over 2 years in a probability sample of more than 150 children from two poor, minority neighborhoods in Minneapolis, Minnesota. Blood levels of benzene, carbon tetrachloride, trichloroethene, and m-/p-xylene were comparable with those measured in selected adults from the Third National Health and Nutrition Examination Survey (NHANES III), whereas concentrations of ethylbenzene, tetrachloroethylene, toluene, 1,1,1-trichloroethane, and o-xylene were two or more times lower in the children. Blood levels of styrene were more than twice as high, and for about 10% of the children 1,4-dichlorobenzene levels were [greater than or equal to] 10 times higher compared with NHANES III subjects. We observed strong statistical associations between numerous pairwise combinations of individual VOCs in blood (e.g., benzene and m-/p-xylene, m-/p-xylene and o-xylene, 1,1,1-trichloroethane and m-/p-xylene, and 1,1,1-trichloroethane and trichloroethene). Between-child variability was higher than within-child variability for 1,4-dichlorobenzene and tetrachloroethylene. Between- and within-child variability were approximately the same for ethylbenzene and 1,1,1-trichloroethane, and between-child was lower than within-child variability for the other seven compounds. Two-day, integrated personal air measurements explained almost 79% of the variance in blood levels for 1,4-dichlorobenzene and approximately 20% for tetrachloroethylene, toluene, m-/p-xylene, and o-xylene. Personal air measurements explained much less of the variance (between 0.5 and 8%) for trichloroethene, styrene, benzene, and ethylbenzene. We observed no significant statistical associations between total urinary cotinine (a biomarker for exposure to environmental tobacco smoke) and blood VOC concentrations. For siblings living in the same household, we found strong statistical associations between measured blood VOC concentrations. Key words: biomarkers, blood concentrations, children's health, cotinine, environmental justice, environmental tobacco smoke, exposure assessment, interchild variability, intrachild variability, personal exposure, volatile organic compounds. doi:10.1289/ehp.7412 available via http://dx.doi.org/[Online 22 November 2004]

**********

Volatile organic compounds (VOCs), many of which exhibit acute and chronic toxicity in people, are common constituents of cleaning and degreasing agents, deodorizers, dry-cleaning processes, paints, pesticides, personal care products, and solvents. Numerous VOCs are also components of automotive exhaust, industrial emissions, and environmental tobacco smoke (ETS), and they can be released into the air during showering or bathing in chlorinated water. Airborne VOCs are therefore ubiquitous in urban and nonurban environments, in indoor and outdoor settings, and in occupational and nonoccupational situations (Adgate et al. 2004a, 2004b; Edwards et al. 2001b; Kim et al. 2002; Sexton et al. 2004a, 2004b, 2004c; Wallace et al. 1985, 1987, 1988).

Although data on nonoccupational exposures to VOCs are scarce, it is apparent that concentrations of many VOCs tend to be higher indoors than outdoors and that personal (breathing zone) exposures are likely to be higher than matched in-home concentrations (Adgate et al. 2004a, 2004b; Edwards et al. 2001b; Kim et al. 2002; Sexton et al. 2004b, 2004c; Wallace et al. 1985, 1987, 1988). Research also demonstrates that nonoccupational exposures can produce corresponding blood VOC concentrations in the parts-per-trillion to parts-per-billion range (Ashley et al. 1992, 1994, 1996, 1997; Brugnone et al. 1989, 1992, 1995; Churchill et al. 2001). Children are a potentially at-risk population because they may be both more exposed to VOCs and more susceptible to adverse effects than adults. It is well established, for example, that children can be affected by different sources, pathways, and routes of exposure than adults; that children often have greater intake of air, food, beverages, soil, and dust per unit body weight and surface area; and that children differ from adults in terms of important pharmacokinetic and pharmacodymanic parameters (Aprea et al. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Children's Exposure to Volatile Organic Compounds as Determined by Longitudinal Measurements in Blood
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.